Skip to main content
Log in

Material science as a cornerstone driving battery research

  • Comment
  • Published:

From Nature Materials

View current issue Submit your manuscript

Materials and surface sciences have been the driving force in the development of modern-day lithium-ion batteries. This Comment explores this journey while contemplating future challenges, such as interface engineering, sustainability and the importance of obtaining high-quality extensive datasets for enhancing data-driven research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Food-chain process from a new phase to practical electrode material.
Fig. 2: Evolving strategies towards the quest of new materials.

Michail Hoika / Alamy Stock Vector (a; thinking man); golero / Getty Images (b); Yuichiro Chino / Getty Images (c).

References

  1. Rahman, M. M. et al. Energy Conserv. Manag. 223, 113295 (2020).

    Article  CAS  Google Scholar 

  2. Whittingham, M. S. Science 192, 1126–1127 (1976).

    Article  CAS  Google Scholar 

  3. Gamble, F. R. et al. Science 174, 493–497 (1971).

    Article  CAS  Google Scholar 

  4. Johnston, W. D., Heikes, R. R. & Sestrich, D. J. Phys. Chem. Solid. 7, 127 (1958).

    Article  Google Scholar 

  5. Whittingham, M. S. Chem. Rev. 104, 4271–4302 (2004).

    Article  CAS  Google Scholar 

  6. Assat, G. & Tarascon, J.-M. Nat. Energy 3, 373–386 (2018).

    Article  CAS  Google Scholar 

  7. Sun, Y.-K. et al. Nat. Mater. 8, 320–324 (2009).

    Article  CAS  Google Scholar 

  8. Ryu, H.-H. et al. Adv. Energy Mater. 10, 2000495 (2020).

    Article  CAS  Google Scholar 

  9. Zhang, W.-J. J. Power Sources 196, 2962–2970 (2011).

    Article  CAS  Google Scholar 

  10. Aricò, A. S. et al. Nat. Mater. 4, 366–377 (2005).

    Article  Google Scholar 

  11. Kamaya, N. et al. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  12. Kato, Y. et al. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  13. Li, J. et al. J. Electrochem. Soc. 164, A3529–A3537 (2017).

    Article  CAS  Google Scholar 

  14. Herzog, M. J. et al. ACS Appl. Energy Mater. 4, 8832–8848 (2021).

    Article  CAS  Google Scholar 

  15. Sun, H. H. et al. ACS Energy Lett. 5, 1136–1146 (2020).

    Article  CAS  Google Scholar 

  16. Yamada, Y. & Yamada, A. J. Electrochem. Soc. 162, A2406–A2423 (2015).

    Article  CAS  Google Scholar 

  17. Tsiropoulos, I., Tarvydas, D. & Lebedeva, N. Li-Ion Batteries for Mobility and Stationary Storage Applications (Publications Office of the European Union, 2018).

  18. White, A. MRS Bulletin 37, 715–716 (2012).

    Article  Google Scholar 

  19. Amici, J. et al. Adv. Energy Mater. 12, 2102785 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank B. Li, S. Mariyappan, A. Grimaud, J. Brown, M.-L. Doublet and P.-E. Cabelguen for valuable discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Marie Tarascon.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Materials thanks M Whittingham, Atsuo Yamada and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarascon, JM. Material science as a cornerstone driving battery research. Nat. Mater. 21, 979–982 (2022). https://doi.org/10.1038/s41563-022-01342-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01342-x

  • Springer Nature Limited

This article is cited by

Navigation