Skip to main content
Log in

Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion

  • Comment
  • Published:

From Nature Materials

View current issue Submit your manuscript

Synthetic stimuli-responsive systems have become increasingly sophisticated and elegant at the nanoscale. This Comment discusses how rationally designed molecular systems capable of dynamic motions can be deployed in macroscopically porous metal–organic frameworks and respond to various stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Rationally designed SR-MOFs.
Fig. 2: Stimuli-responsive peptide-MOFs.
Fig. 3: Dynamic characterizations of SR-MOFs.
Fig. 4: Potential applications of SR-MOFs.

References

  1. Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Nature 402, 276–279 (1999).

    Article  CAS  Google Scholar 

  2. Schoedel, A., Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Chem. Rev. 116, 12466–12535 (2016).

    Article  CAS  Google Scholar 

  3. Eddaoudi, M. et al. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  4. Bloch, E. D. et al. Science 335, 1606–1610 (2012).

    Article  CAS  Google Scholar 

  5. Lin, R.-B. et al. Nat. Mater. 17, 1128–1133 (2018).

    Article  CAS  Google Scholar 

  6. Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Nat. Chem. 2, 439–443 (2010).

    Article  CAS  Google Scholar 

  7. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Angew. Chem. Int. Ed. 42, 428–431 (2003).

    Article  CAS  Google Scholar 

  8. Horike, S. et al. Angew. Chem. Int. Ed. 45, 7226–7230 (2006).

    Article  CAS  Google Scholar 

  9. Horike, S., Shimomura, S. & Kitagawa, S. Nat. Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  10. Krause, S. & Feringa, B. L. Nat. Rev. Chem. 4, 550–562 (2020).

    Article  CAS  Google Scholar 

  11. Berná, J. et al. Nat. Mater. 4, 704–710 (2005).

    Article  Google Scholar 

  12. Martinez-Bulit, P., Stirk, A. J. & Loeb, S. J. Trends Chem. 1, 588–600 (2019).

    Article  CAS  Google Scholar 

  13. Vogelsberg, C. S. et al. Proc. Natl Acad. Sci. USA 114, 13613–13618 (2017).

    Article  CAS  Google Scholar 

  14. Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. J. Am. Chem. Soc. 130, 3246–3247 (2008).

    Article  CAS  Google Scholar 

  15. Perego, J. et al. Nat. Chem. 12, 845–851 (2020).

    Article  CAS  Google Scholar 

  16. Su, Y. S. et al. Nat. Chem. 13, 278–283 (2021).

    Article  CAS  Google Scholar 

  17. Jiang, X., Duan, H.-B., Khan, S. I. & Garcia-Garibay, M. A. ACS Cent. Sci. 2, 608–613 (2016).

    Article  CAS  Google Scholar 

  18. Zhang, M. et al. J. Am. Chem. Soc. 136, 7241–7244 (2014).

    Article  CAS  Google Scholar 

  19. Danowski, W. et al. Nat. Nanotechnol. 14, 488–494 (2019).

    Article  CAS  Google Scholar 

  20. Meng, X., Gui, B., Yuan, D., Zeller, M. & Wang, C. Sci. Adv. 2, e1600480 (2016).

    Article  Google Scholar 

  21. Heinke, L. et al. ACS Nano 8, 1463–1467 (2014).

    Article  CAS  Google Scholar 

  22. Kanj, A. B. et al. J. Am. Chem. Soc. 143, 7059–7068 (2021).

    Article  CAS  Google Scholar 

  23. Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Nat. Chem. 4, 456–460 (2012).

    Article  CAS  Google Scholar 

  24. Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. Nat. Chem. 7, 514–519 (2015).

    Article  CAS  Google Scholar 

  25. Katsoulidis, A. P. et al. Nature 565, 213–217 (2019).

    Article  CAS  Google Scholar 

  26. Martí-Gastaldo, C. et al. Nat. Chem. 6, 343–351 (2014).

    Article  Google Scholar 

  27. Prando, G. et al. Nano Lett. 20, 7613–7618 (2020).

    Article  CAS  Google Scholar 

  28. Dong, J. et al. Chem. Mater. 32, 6706–6720 (2020).

    Article  CAS  Google Scholar 

  29. Lu, K. et al. J. Am. Chem. Soc. 138, 12502–12510 (2016).

    Article  CAS  Google Scholar 

  30. Krause, S., Hosono, N. & Kitagawa, S. Angew. Chem. Int. Ed. 59, 15325–15341 (2020).

    Article  CAS  Google Scholar 

  31. Gu, C. et al. Science 363, 387–391 (2019).

    Article  CAS  Google Scholar 

  32. Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. Science 353, 137–140 (2016).

    Article  CAS  Google Scholar 

  33. Dong, J. et al. Chem. Mater. 28, 7889–7897 (2016).

    Article  CAS  Google Scholar 

  34. Dong, J. et al. J. Am. Chem. Soc. 140, 4035–4046 (2018).

    Article  CAS  Google Scholar 

  35. Gong, W. et al. Chem 7, 190–201 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education - Singapore (MOE2018-T2-2-148, MOE2019-T2-1-093), the Energy Market Authority (EMA-EP009-SEGC-020), and the Agency for Science, Technology and Research (U2102d2004, U2102d2012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinqiao Dong or Dan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Stefan Kaskel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Wee, V. & Zhao, D. Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion. Nat. Mater. 21, 1334–1340 (2022). https://doi.org/10.1038/s41563-022-01317-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01317-y

  • Springer Nature Limited

Navigation