Skip to main content
Log in

Flexible automation accelerates materials discovery

  • Comment
  • Published:

From Nature Materials

View current issue Submit your manuscript

Automated experiments can accelerate research and development. ‘Flexible automation’ enables the cost- and time-effective design, construction and reconfiguration of automated experiments. Flexible automation is empowering researchers to deploy new science and technology faster than ever before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Commoditization of safer, lower-cost, user-friendly robots.
Fig. 2: Flexible automation enables reconfigurable, fully automated materials science experiments.
Fig. 3: Examples of flexible automation in action in materials science.

References

  1. Schneider, G. Nat. Rev. Drug Discov. 17, 97–113 (2018).

    Article  CAS  Google Scholar 

  2. Bloss, R. Indust. Robot 43, 463–468 (2016).

    Article  Google Scholar 

  3. Masubuchi, S. et al. Nat. Commun. 9, 1413 (2018).

    Article  Google Scholar 

  4. MacLeod, B. P. et al. Sci. Adv. 6, eaaz8867 (2020).

    Article  CAS  Google Scholar 

  5. Li, J. et al. Nat. Commun. 11, 2046 (2020).

    Article  CAS  Google Scholar 

  6. Burger, B. et al. Nature 583, 237–241 (2020).

    Article  CAS  Google Scholar 

  7. Gongora, A. E. et al. Sci. Adv. 6, eaaz1708 (2020).

    Article  Google Scholar 

  8. Wagner, J. et al. J. Mater. Sci. 56, 16422–16446 (2021).

    Article  CAS  Google Scholar 

  9. Du, X. et al. Joule 5, 495–506 (2021).

    Article  CAS  Google Scholar 

  10. Coley, C. W. et al. Science 365, eaax1566 (2019).

    Article  CAS  Google Scholar 

  11. Gongora, A. E. et al. iScience 24, 102262 (2021).

    Article  Google Scholar 

  12. Shiri, P. et al. iScience 24, 102176 (2021).

    Article  CAS  Google Scholar 

  13. Spowart, J. E., Mullens, H. E. & Puchala, B. T. JOM 55, 35–37 (2003).

    Article  CAS  Google Scholar 

  14. Roch, L. M. et al. PLoS ONE 15, e0229862 (2020).

    Article  CAS  Google Scholar 

  15. Forward, R. L. et al. ACS Energy Lett. 4, 2547–2551 (2019).

    Article  CAS  Google Scholar 

  16. Blakesley, J. C. et al. Org. Electron. 15, 1263–1272 (2014).

    Article  CAS  Google Scholar 

  17. Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Nat. Catal. 1, 501–507 (2018).

    Article  CAS  Google Scholar 

  18. Boyce, B. L. & Uchic, M. D. MRS Bull. 44, 273–280 (2019).

    Article  CAS  Google Scholar 

  19. Taherimakhsousi, N. et al. npj Comput. Mater. 6, 111 (2020).

    Article  Google Scholar 

  20. Zhang, Y., Liu, J. J., Zhang, L., De Anda, J. C. & Wang, X. Z. Particuology 24, 61–68 (2016).

    Article  Google Scholar 

  21. Langner, S. et al. Adv. Mater. 32, e1907801 (2020).

    Article  Google Scholar 

  22. Hanak, J. J. J. Mater. Sci. 5, 964–971 (1970).

    Article  CAS  Google Scholar 

  23. Green, M. L. et al. Appl. Phys. Rev. 4, 011105 (2017).

    Article  Google Scholar 

  24. Wang, J. & Evans, J. R. G. J. Comb. Chem. 7, 665–672 (2005).

    Article  CAS  Google Scholar 

  25. Gregoire, J. M., Xiang, C., Liu, X., Marcin, M. & Jin, J. Rev. Sci. Instrum. 84, 024102 (2013).

    Article  Google Scholar 

  26. Stein, H. S. & Gregoire, J. M. Chem. Sci. 10, 9640–9649 (2019).

    Article  CAS  Google Scholar 

  27. Szymanski, N. J. et al. Mater. Horiz. 8, 2169–2198 (2021).

    Article  CAS  Google Scholar 

  28. Pearce, J. M. Science 337, 1303–1304 (2012).

    Article  CAS  Google Scholar 

  29. Jiménez, R. C. et al. F1000Research 6, 876 (2017).

    Article  Google Scholar 

  30. Korus, S. Industrial robot cost declines should trigger tipping points in demand. https://go.nature.com/2ZKHvZc (ARK Investment Management LLC, 2019).

  31. Dhillon, B. S. (ed.) in Robot Reliability and Safety 49–68 (Springer, 1991).

  32. Rossano, G. F., Martinez, C., Hedelind, M., Murphy, S. & Fuhlbrigge, T. A. In 2013 IEEE International Conference on Automation Science and Engineering (CASE) 1119–1126 (IEEE, 2013).

  33. Pratt, G. A. J. Econ. Perspect. 29, 51–60 (2015).

    Article  Google Scholar 

  34. Wirtz, J. et al. J. Service Manage. 29, 907–931 (2018).

    Article  Google Scholar 

  35. Bock, T. Autom. Constr. 59, 113–121 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

For sharing their experiences deploying flexible automation, we would like to acknowledge our colleagues E. Booker, N. Taherimakhsousi, M. Elliott, M. Rooney, K. Dettelbach, T. Haley, K. Ocean, T. Morrissey, C. Krzyszkowski, A. Proskurin, S. Steiner, L. Alde, H. Situ, V. Lai and T. Zepel. For encouraging us to adopt machine vision into our workflows and other guidance, we thank J. Platt. We thank Natural Resources Canada (EIP2-MAT-001) for their financial support. C.P.B. is grateful to the Canadian Natural Sciences and Engineering Research Council (RGPIN-2018-06748), Canadian Foundation for Innovation (229288), Canadian Institute for Advanced Research (BSE-BERL-162173) and Canada Research Chairs for financial support. J.E.H. is supported by the Canadian Foundation for Innovation (CFI-35883) and the Natural Sciences and Engineering Research Council of Canada (RCPIN-2016-04613, CRDPJ 530118-18). B.P.M., F.G.L.P. and C.P.B. acknowledge support from the SBQMI’s Quantum Electronic Science and Technology Initiative, the Canada First Research Excellence Fund, and the Quantum Materials and Future Technologies Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis P. Berlinguette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Benji Maruyama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacLeod, B.P., Parlane, F.G.L., Brown, A.K. et al. Flexible automation accelerates materials discovery. Nat. Mater. 21, 722–726 (2022). https://doi.org/10.1038/s41563-021-01156-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01156-3

  • Springer Nature Limited

This article is cited by

Navigation