Skip to main content
Log in

Engineering quantum materials with chiral optical cavities

  • Comment
  • Published:

From Nature Materials

View current issue Submit your manuscript

Strong light–matter coupling in quantum cavities provides a pathway to break fundamental materials symmetries, like time-reversal symmetry in chiral cavities. This Comment discusses the potential to realize non-equilibrium states of matter that have so far been only accessible in ultrafast and ultrastrong laser-driven materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Cavity modes for different cavity environments leading to symmetry-breaking configurations.
Fig. 2: QED materials engineering and phenomenology.

References

  1. Keimer, B. & Moore, J. E. Nat. Phys. 13, 1045–1055 (2017).

    Article  CAS  Google Scholar 

  2. Tokura, Y., Kawasaki, M. & Nagaosa, N. Nat. Phys. 13, 1056–1068 (2017).

    Article  CAS  Google Scholar 

  3. Hsieh, D., Basov, D. N. & Averitt, R. D. Nat. Mater. 16, 1077–1088 (2017).

    Article  Google Scholar 

  4. Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Science 364, 1075–1079 (2019).

    Article  CAS  Google Scholar 

  5. Li, X. et al. Science 364, 1079–1082 (2019).

    Article  CAS  Google Scholar 

  6. Lindner, N. H., Refael, G. & Galitski, V. Nat. Phys. 7, 490–495 (2011).

    Article  CAS  Google Scholar 

  7. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Science 342, 453–457 (2013).

    Article  CAS  Google Scholar 

  8. Oka, T. & Kitamura, S. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2018).

    Article  Google Scholar 

  9. Rudner, M. S. & Lindner, N. H. BNat. Rev. Phys. 2, 229–244 (2020).

    CAS  Google Scholar 

  10. Ozawa, T. & Price, H. M. Nat. Rev. Phys. 1, 349–357 (2019).

    Article  Google Scholar 

  11. Kockum, A. F., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Nat. Rev. Phys. 1, 19–40 (2019).

    Article  Google Scholar 

  12. Plum, E. & Zheludev, N. I. Appl. Phys. Lett. 106, 221901 (2015).

    Article  Google Scholar 

  13. Kasprzak, J. et al. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  14. Schäfer, C., Ruggenthaler, M. & Rubio, A. Phys. Rev. A 98, 043801 (2018).

    Article  Google Scholar 

  15. Thomas, A. et al. Preprint at https://arxiv.org/abs/1911.01459 (2019).

  16. Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Phys. Rev. Lett. 122, 167002 (2019).

    Article  CAS  Google Scholar 

  17. Sentef, M. A., Ruggenthaler, M. & Rubio, A. Sci. Adv. 4, eaau6969 (2018).

    Article  CAS  Google Scholar 

  18. Schlawin, F., Cavalleri, A. & Jaksch, D. Phys. Rev. Lett. 122, 133602 (2019).

    Article  CAS  Google Scholar 

  19. Mazza, G. & Georges, A. Phys. Rev. Lett. 122, 017401 (2019).

    Article  CAS  Google Scholar 

  20. Latini, S., Ronca, E., De Giovannini, U., Hübener, H. & Rubio, A. Nano Lett. 19, 3473–3479 (2019).

    Article  CAS  Google Scholar 

  21. Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Nat. Photon. 11, 431–435 (2017).

    Article  CAS  Google Scholar 

  22. Sun, Z. et al. Nat. Photon. 11, 491–496 (2017).

    Article  CAS  Google Scholar 

  23. Dufferwiel, S. et al. Nat. Photon. 11, 497–501 (2017).

    Article  CAS  Google Scholar 

  24. Vitale, S. A. et al. Small 14, 1801483 (2018).

    Article  Google Scholar 

  25. Ashida, Y. et al. Preprint at https://arxiv.org/abs/2003.13695 (2020).

  26. Oka, T. & Aoki, H. Phys. Rev. B 79, 081406 (2009).

    Article  Google Scholar 

  27. McIver, J. W. et al. Nat. Phys. 16, 38–41 (2019).

    Article  Google Scholar 

  28. Sato, S. A. et al. Phys. Rev. B 99, 214302 (2019).

    Article  CAS  Google Scholar 

  29. Wang, X., Ronca, E. & Sentef, M. A. Phys. Rev. B 99, 235156 (2019).

    Article  CAS  Google Scholar 

  30. Hübener, H., Sentef, M. A., De Giovannini, U., Kemper, A. F. & Rubio, A. Nat. Commun. 8, 13940 (2017).

    Article  Google Scholar 

  31. Sodemann, I. & Fu, L. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  32. Scalari, G. et al. Science 335, 1323–1326 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. A. Sato, D. Shin, M. A. Sentef, E. Ronca, S. Latini, D. Basov, J.-M. Triscone, A. Pasupathy, E. Demler, A. Cavalleri, A. Imamoglu, J. Flick, A. Georges and A. Millis for the fruitful discussion. We acknowledge financial support from the European Research Council (ERC-2015-AdG-694097), SNF project 200020_192330 and the Cluster of Excellence Advanced Imaging of Matter (AIM) EXC 2056-390715994. The Flatiron Institute is a division of the Simons Foundation. Support by the Max Planck — New York City Center for Non-Equilibrium Quantum Phenomena is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hannes Hübener, Umberto De Giovannini or Angel Rubio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hübener, H., De Giovannini, U., Schäfer, C. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021). https://doi.org/10.1038/s41563-020-00801-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00801-7

  • Springer Nature Limited

This article is cited by

Navigation