Abstract
This study investigates the structure of social hierarchies. We hypothesized that if social dominance relations serve to regulate conflicts over resources, then hierarchies should converge towards pyramidal shapes. Structural analyses and simulations confirmed this hypothesis, revealing a triadic-pyramidal motif across human and non-human hierarchies (114 species). Phylogenetic analyses showed that this pyramidal motif is widespread, with little influence of group size or phylogeny. Furthermore, nine experiments conducted in France found that human adults (N = 120) and infants (N = 120) draw inferences about dominance relations that are consistent with hierarchies’ pyramidal motif. By contrast, human participants do not draw equivalent inferences based on a tree-shaped pattern with a similar complexity to pyramids. In short, social hierarchies exhibit a pyramidal motif across a wide range of species and environments. From infancy, humans exploit this regularity to draw systematic inferences about unobserved dominance relations, using processes akin to formal reasoning.
Similar content being viewed by others
Data availability
All data are available at https://doi.org/10.17605/OSF.IO/PK7BG.
Code availability
All analysis scripts are available at https://doi.org/10.17605/OSF.IO/PK7BG.
References
Krieger, N. Ladders, pyramids and champagne: the iconography of health inequities. J. Epidemiol. Community Health 62, 1098–1104 (2008).
Yu, S., Greer, L. L., Halevy, N. & Van Bunderen, L. On ladders and pyramids: hierarchy’s shape determines relationships and performance in groups. Personal. Soc. Psychol. Bull. 45, 1717–1733 (2019).
Gruenfeld, D. H. & Tiedens, L. Z. in Handbook of Social Psychology (eds Fiske, S. T. et al.) 1252–1287 (John Wiley and Sons, 2010).
Blau, P. M. A macrosociological theory of social structure. Am. J. Sociol. 83, 26–54 (1977).
Wellman, N., Applegate, J. M., Harlow, J. & Johnston, E. W. Beyond the pyramid: alternative formal hierarchical structures and team performance. Acad. Manag. J. 63, 997–1027 (2020).
Hand, J. L. Resolution of social conflicts: dominance, egalitarianism, spheres of dominance, and game theory. Q. Rev. Biol. 61, 201–220 (1986).
Weber, M. in From Max Weber: Essays in Sociology (eds Gerth, H. H. and Wright Mills, C.) 180–195 (Oxford Univ. Press, 1946).
Strauss, E. D., Curley, J. P., Shizuka, D. & Hobson, E. A. The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200432 (2022).
Cummins, D. D. in Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. and Weekes-Shackelford, V. A.) 7923–7932 (Springer, 2016).
Hawley, P. H. The ontogenesis of social dominance: a strategy-based evolutionary perspective. Dev. Rev. 19, 97–132 (1999).
Hawley, P. H. Ontogeny and social dominance: a developmental view of human power patterns. Evol. Psychol. 12, 318–342 (2014).
Hawley, P. H. & Bower, A. R. in Handbook of Peer Interactions, Relationships, and Groups 106–122 (Guilford, 2018).
Cummins, D. D. in Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. and Weekes-Shackelford, V. A.) 41–44 (Springer, 2016).
Tibbetts, E. A., Pardo-Sanchez, J. & Weise, C. The establishment and maintenance of dominance hierarchies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200450 (2022).
Flack, J. C. & Krakauer, D. C. Encoding power in communication networks. Am. Nat. 168, E87–E102 (2006).
Smith, J. M. The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47, 209–221 (1974).
Smith, J. & Price, G. R. The logic of animal conflict. Nature 246, 15–18 (1973).
Bernstein, I. S. Dominance: the baby and the bathwater. Behav. Brain Sci. 4, 419–429 (1981).
Holekamp, K. E. & Strauss, E. D. Aggression and dominance: an interdisciplinary overview. Curr. Opin. Behav. Sci. 12, 44–51 (2016).
Shizuka, D. & McDonald, D. B. A social network perspective on measurements of dominance hierarchies. Anim. Behav. 83, 925–934 (2012).
Neumann, C., McDonald, D. B. & Shizuka, D. Dominance ranks, dominance ratings and linear hierarchies: a critique. Anim. Behav. 144, e1–e16 (2018).
Deslippe, R. J., M’Closkey, R. T., Dajczak, S. P. & Szpak, C. P. A quantitative study of the social behavior of tree lizards, Urosaurus ornatus. J. Herpetol. 24, 337–341 (1990).
Uhrich, J. The social hierarchy in albino mice. J. Comp. Psychol. 25, 373–413 (1938).
van Hooff, J. A. R. A. M. & Wensing, J. A. B. in Man and Wolf: Advances, Issues, and Problems in Captive Wolf Research (ed. Frank, H.) 219–252 (Dr W Junk Publishers, 1987).
Van Doorn, A. & Heringa, J. The ontogeny of a dominance hierarchy in colonies of the bumblebee Bombus terrestris (Hymenoptera, Apidae). Insectes Soc. 33, 3–25 (1986).
Kinsey, K. P. Social behaviour in confined populations of the Allegheny woodrat, Neotoma floridana magister. Anim. Behav. 24, 181–187 (1976).
Shimoji, H., Abe, M. S., Tsuji, K. & Masuda, N. Global network structure of dominance hierarchy of ant workers. J. R. Soc. Interface 11, 20140599 (2014).
Shizuka, D. & McDonald, D. B. The network motif architecture of dominance hierarchies. J. R. Soc. Interface 12, 20150080 (2015).
Chen Zeng, T., Cheng, J. T. & Henrich, J. Dominance in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200451 (2022).
Chase, I. D. Social process and hierarchy formation in small groups: a comparative perspective. Am. Sociol. Rev. 45, 905–924 (1980).
Redhead, D. & Power, E. A. Social hierarchies and social networks in humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200440 (2022).
Dubreuil, B. Human Evolution and the Origins of Hierarchies: The State of Nature (Cambridge Univ. Press, 2010).
Thomsen, L. & Carey, S. in Navigating the Social World: What Infants, Children, and Other Species Can Teach Us (eds Banaji, M. R. and Gelman, S. A.) 17–22 (Oxford Univ. Press, 2013).
Fiske, A. P. Structures of Social Life: The Four Elementary Forms of Human Relations: Communal Sharing, Authority Ranking, Equality Matching, Market Pricing (Free Press, 1991).
Fiske, A. P. The four elementary forms of sociality: framework for a unified theory of social relations. Psychol. Rev. 99, 689–783 (1992).
Cheney, D. L. & Seyfarth, R. M. Baboon Metaphysics (Univ. Chicago Press, 2008).
Bergman, T. J., Beehner, J. C., Cheney, D. L. & Seyfarth, R. M. Hierarchical classification by rank and kinship in baboons. Science 302, 1234–1236 (2003).
Basyouni, R. & Parkinson, C. Mapping the social landscape: tracking patterns of interpersonal relationships. Trends Cogn. Sci. 26, 204–221 (2022).
Cummins, D. D. How the social environment shaped the evolution of mind. Synthese 122, 3–28 (2000).
Cummins, D. D. Dominance hierarchies and the evolution of human reasoning. Minds Mach. 6, 463–480 (1996).
Fernald, R. D. Cognitive skills and the evolution of social systems. J. Exp. Biol. 220, 103–113 (2017).
Cummins, D. D. in Encyclopedia of Evolutionary Psychological Science (eds Shackelford, T. K. and Weekes-Shackelford, V. A.) 2104–2112 (Springer, 2016).
Strayer, F. F. & Strayer, J. An ethological analysis of social agonism and dominance relations among preschool children. Child Dev. 47, 980–989 (1976).
Gazes, R. P., Hampton, R. R. & Lourenco, S. F. Transitive inference of social dominance by human infants. Dev. Sci. 20, e12367 (2017).
Grosenick, L., Clement, T. S. & Fernald, R. D. Fish can infer social rank by observation alone. Nature 445, 429–432 (2007).
Mascaro, O. & Csibra, G. Human infants’ learning of social structures: the case of dominance hierarchy. Psychol. Sci. 25, 250–255 (2014).
Paz-y-Miño, C. G., Bond, A. B., Kamil, A. C. & Balda, R. P. Pinyon jays use transitive inference to predict social dominance. Nature 430, 778–781 (2004).
De Soto, C. B. Learning a social structure. J. Abnorm. Soc. Psychol. 60, 417–421 (1960).
Zitek, E. M. & Tiedens, L. Z. The fluency of social hierarchy: the ease with which hierarchical relationships are seen, remembered, learned, and liked. J. Pers. Soc. Psychol. 102, 98–115 (2012).
Strauss, E. D. et al. DomArchive: a century of published dominance data. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20200436 (2022).
Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002).
Stone, L., Simberloff, D. & Artzy-Randrup, Y. Network motifs and their origins. PLoS Comput. Biol. 15, e1006749 (2019).
Farine, D. R. A guide to null models for animal social network analysis. Methods Ecol. Evol. 8, 1309–1320 (2017).
Milo, R. et al. Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004).
Cheng, N., Wan, Y., An, J., Gummerum, M. & Zhu, L. Power grabbed or granted: children’s allocation of resources in social power situations. J. Exp. Child Psychol. 210, 105192 (2021).
Zhang, X. et al. Material and relational asymmetry: the role of receivers’ wealth and power status in children’s resource allocation. J. Exp. Child Psychol. 208, 105147 (2021).
Charafeddine, R. et al. Children’s allocation of resources in social dominance situations. Dev. Psychol. 52, 1843–1857 (2016).
Enright, E. A., Alonso, D. J., Lee, B. M. & Olson, K. R. Children’s understanding and use of four dimensions of social status. J. Cogn. Dev. 21, 573–602 (2020).
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
Verbrugge, L. M. The structure of adult friendship choices. Soc. Forces 56, 576–597 (1977).
Pratto, F., Sidanius, J. & Levin, S. Social dominance theory and the dynamics of intergroup relations: taking stock and looking forward. Eur. Rev. Soc. Psychol. 17, 271–320 (2006).
Hartup, W. W. & Abecassis, M. in Blackwell Handbook of Childhood Social Development (eds Smith, P. K. and Hart, C. H.) 286–306 (Blackwell, 2002).
Bas, J. & Sebastian-Galles, N. Infants’ representation of social hierarchies in absence of physical dominance. PLoS ONE 16, e0245450 (2021).
Enright, E. A., Gweon, H. & Sommerville, J. A. ‘To the victor go the spoils’: infants expect resources to align with dominance structures. Cognition 164, 8–21 (2017).
Mascaro, O. & Csibra, G. Representation of stable social dominance relations by human infants. Proc. Natl Acad. Sci. USA 109, 6862–6867 (2012).
Margoni, F., Baillargeon, R. & Surian, L. Infants distinguish between leaders and bullies. Proc. Natl Acad. Sci. USA 115, E8835–E8843 (2018).
Meng, X., Nakawake, Y., Nitta, H., Hashiya, K. & Moriguchi, Y. Space and rank: infants expect agents in higher position to be socially dominant. Proc. R. Soc. Lond. B Biol. Sci. 286, 20191674 (2019).
Meng, X. et al. Preverbal infants expect agents exhibiting counterintuitive capacities to gain access to contested resources. Sci. Rep. 11, 10884 (2021).
Pun, A., Birch, S. A. & Baron, A. S. The power of allies: infants’ expectations of social obligations during intergroup conflict. Cognition 211, 104630 (2021).
Pun, A., Birch, S. A. & Baron, A. S. Infants use relative numerical group size to infer social dominance. Proc. Natl Acad. Sci. USA 113, 2376–2381 (2016).
Pun, A., Birch, S. A. & Baron, A. S. Infants infer third-party social dominance relationships based on visual access to intergroup conflict. Sci. Rep. 12, 18250 (2022).
Thomas, A. J. & Sarnecka, B. W. Infants choose those who defer in conflicts. Curr. Biol. 29, 2183–2189 (2019).
Thomas, A. J., Thomsen, L., Lukowski, A. F., Abramyan, M. & Sarnecka, B. W. Toddlers prefer those who win but not when they win by force. Nat. Hum. Behav. 2, 662–669 (2018).
Thomsen, L., Frankenhuis, W. E., Ingold-Smith, M. & Carey, S. Big and mighty: preverbal infants mentally represent social dominance. Science 331, 477–480 (2011).
Bian, L., Sloane, S. & Baillargeon, R. Infants expect ingroup support to override fairness when resources are limited. Proc. Natl Acad. Sci. USA 115, 2705–2710 (2018).
Jin, K. & Baillargeon, R. Infants possess an abstract expectation of ingroup support. Proc. Natl Acad. Sci. USA 114, 8199–8204 (2017).
Liberman, Z., Kinzler, K. D. & Woodward, A. L. Friends or foes: infants use shared evaluations to infer others’ social relationships. J. Exp. Psychol. Gen. 143, 966–971 (2014).
Liberman, Z., Woodward, A. L., Sullivan, K. R. & Kinzler, K. D. Early emerging system for reasoning about the social nature of food. Proc. Natl Acad. Sci. USA 113, 9480–9485 (2016).
Powell, L. J. & Spelke, E. S. Preverbal infants expect members of social groups to act alike. Proc. Natl Acad. Sci. USA 110, E3965–E3972 (2013).
Powell, L. J. & Spelke, E. S. Human infants’ understanding of social imitation: inferences of affiliation from third party observations. Cognition 170, 31–48 (2018).
Rhodes, M., Hetherington, C., Brink, K. & Wellman, H. M. Infants’ use of social partnerships to predict behavior. Dev. Sci. 18, 909–916 (2015).
Thomas, A. J., Saxe, R. & Spelke, E. S. Infants infer potential social partners by observing the interactions of their parent with unknown others. Proc. Natl Acad. Sci. USA 119, e2121390119 (2022).
Thomas, A. J., Woo, B., Nettle, D., Spelke, E. & Saxe, R. Early concepts of intimacy: young humans use saliva sharing to infer close relationships. Science 375, 311–315 (2022).
Aslin, R. N. Infant eyes: a window on cognitive development. Infancy 17, 126–140 (2012).
Stahl, A. E. & Feigenson, L. Observing the unexpected enhances infants’ learning and exploration. Science 348, 91–94 (2015).
Hamlin, J. K., Wynn, K. & Bloom, P. Social evaluation by preverbal infants. Nature 450, 557–559 (2007).
Kanakogi, Y. et al. Third-party punishment by preverbal infants. Nat. Hum. Behav. 6, 1234–1242 (2022).
Kanakogi, Y. et al. Preverbal infants affirm third-party interventions that protect victims from aggressors. Nat. Hum. Behav. 1, 0037 (2017).
Kominsky, J. F., Lucca, K., Thomas, A. J., Frank, M. C. & Hamlin, J. K. Simplicity and validity in infant research. Cogn. Dev. 63, 101213 (2022).
Chase, I. D. Dynamics of hierarchy formation: the sequential development of dominance relationships. Behaviour 80, 218–240 (1982).
Chase, I. D. The sequential analysis of aggressive acts during hierarchy formation: an application of the ‘jigsaw puzzle’ approach. Anim. Behav. 33, 86–100 (1985).
Zitek, E. M. & Phillips, L. T. Ease and control: the cognitive benefits of hierarchy. Curr. Opin. Psychol. 33, 131–135 (2020).
Moors, A. & De Houwer, J. Automatic processing of dominance and submissiveness. Exp. Psychol. 52, 296–302 (2005).
Ko, S. J., Sadler, M. S. & Galinsky, A. D. The sound of power: conveying and detecting hierarchical rank through voice. Psychol. Sci. 26, 3–14 (2015).
Phillips, L. T., Slepian, M. L. & Hughes, B. L. Perceiving groups: the people perception of diversity and hierarchy. J. Personal. Soc. Psychol. 114, 766–785 (2018).
Pietraszewski, D. How the mind sees coalitional and group conflict: the evolutionary invariances of n-person conflict dynamics. Evol. Hum. Behav. 37, 470–480 (2016).
Pietraszewski, D. Toward a computational theory of social groups: a finite set of cognitive primitives for representing any and all social groups in the context of conflict. Behav. Brain Sci. 45, e97 (2021).
Plusquellec, P., François, N., Boivin, M., Perusse, D. & Tremblay, R. E. Dominance among unfamiliar peers starts in infancy. Infant Ment. Health J. 28, 324–343 (2007).
Strayer, F. F. & Trudel, M. Developmental changes in the nature and function of social dominance among young children. Ethol. Sociobiol. 5, 279–295 (1984).
Russon, A. E. & Waite, B. E. Patterns of dominance and imitation in an infant peer group. Ethol. Sociobiol. 12, 55–73 (1991).
Hawley, P. H. & Little, T. D. On winning some and losing some: a social relations approach to social dominance in toddlers. Merrill-Palmer Q. 45, 185–214 (1999).
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).
Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl Acad. Sci. USA 105, 10687–10692 (2008).
Arnold, C., Matthews, L. J. & Nunn, C. L. The 10kTrees website: a new online resource for primate phylogeny. Evol. Anthropol. Issues N. Rev. 19, 114–118 (2010).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).
Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
Brainard, D. H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).
Krupenye, C. & Hare, B. Bonobos prefer individuals that hinder others over those that help. Curr. Biol. 28, 280–286 (2018).
Bas, J., Sebastian-Galles, N., Csibra, G. & Mascaro, O. Infants’ representation of asymmetric social influence. J. Exp. Child Psychol. 226, 105564 (2023).
Csibra, G., Hernik, M., Mascaro, O., Tatone, D. & Lengyel, M. Statistical treatment of looking-time data. Dev. Psychol. 52, 521–536 (2016).
Acknowledgements
We thank the participants and their parents, M. Brun and A. Couderc for their help with data collection and coding, as well as all the members of the Laboratory on Language, Brain and Cognition (L2C2) and of the Integrative Neuroscience and Cognition Center (INCC) for their invaluable input at all stages of this research. This work was supported by a fellowship from the French National Research Agency (ANR) to O.M. (Foundtrust, ANR-21-CE28-0017). The funders had no role in study design, data collection and analysis, the decision to publish or the preparation of the manuscript.
Author information
Authors and Affiliations
Contributions
O.M. supervised the project. O.M. and N.C. designed the network data analysis. O.M. and A.D. gathered children’s network data from the literature. N.C. implemented the network data analysis. O.M., N.G., H.P. and J.B.V.H. designed the experimental studies. N.G. and H.P. created the experimental materials. N.G., H.P. and A.D. collected and coded the experimental data. O.M. wrote the analysis script for experimental data. O.M. wrote the original draft. O.M., N.G., H.P., A.D., J.-B.V.H. and N.C. reviewed and edited the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Human Behaviour thanks Denise D. Cummins and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Normalized z-scores per triadic pattern and category (N = 318 independent groups).
We computed normalized z-scores for basic patterns that can occur in a dominance structure: triadic pyramids, triadic trees, chains, transitive triads, and circular triads. Data reveal a pyramidal motif, with an overrepresentation of pyramids in all taxonomic groups. The results also confirm that dominance relations tend to be transitive in all taxonomic groups, with an overrepresentation of transitive structures and an under-representation of chains and circular structures. Red dots and error bars indicate means and bootstrapped 95% CIs; vertical bars within boxes indicate medians, and boxes indicate the interquartile range; right whiskers represent data up to 1.5 times the interquartile range above the third quartile, and left whiskers represent data up to 1.5 times the interquartile range below the first quartile; Each grey dot represents data from one social group. P values were assessed with two-tailed one-sample Wilcoxon tests, and were corrected for multiple comparisons across taxonomic categories using the Holm-Bonferroni procedure. * p < .05, **p < 0.01, ***p < 0.001, ns: non-significant.
Extended Data Fig. 2 Average triadic pyramidal metric per species organized by phylogeny for primates species only (36 species, 100 groups).
We used the “10kTrees” phylogeny to estimate relatedness among primates105.
Extended Data Fig. 3 Average triadic pyramidal metric per species organized by phylogeny for all species (110 species, 311 groups).
We used a consensus tree from the Open Tree of Life (v.13.14, https://tree.opentreeoflife.org/about/synthesis-release/v13.4) to estimate relatedness among species.
Supplementary information
Supplementary Information
Supplementary analysis, methods, results and Tables 1–6.
Supplementary Video 1
Familiarization videos for studies 5a, 6a and 7a (example).
Supplementary Video 2
Test videos for study 5a (example).
Supplementary Video 3
Familiarization videos for studies 5b, 6b and 7b (example).
Supplementary Video 4
Test videos for study 5b (example).
Supplementary Video 5
Test videos for studies 6a and 6b (example).
Supplementary Video 6
Test videos for studies 7a and 7b (example).
Supplementary Video 7
Long and short familiarization videos (example).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mascaro, O., Goupil, N., Pantecouteau, H. et al. Human and animal dominance hierarchies show a pyramidal structure guiding adult and infant social inferences. Nat Hum Behav 7, 1294–1306 (2023). https://doi.org/10.1038/s41562-023-01634-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41562-023-01634-5
- Springer Nature Limited
This article is cited by
-
Estimating the command hierarchy of a drug trafficking group based on criminals’ telecommunication network
Journal of Computational Social Science (2024)