Skip to main content

Advertisement

Log in

An umbrella review of randomized control trials on the effects of physical exercise on cognition

  • Article
  • Published:

From Nature Human Behaviour

View current issue Submit your manuscript

Abstract

Extensive research links regular physical exercise to an overall enhancement of cognitive function across the lifespan. Here we assess the causal evidence supporting this relationship in the healthy population, using an umbrella review of meta-analyses limited to randomized controlled trials (RCTs). Despite most of the 24 reviewed meta-analyses reporting a positive overall effect, our assessment reveals evidence of low statistical power in the primary RCTs, selective inclusion of studies, publication bias and large variation in combinations of pre-processing and analytic decisions. In addition, our meta-analysis of all the primary RCTs included in the revised meta-analyses shows small exercise-related benefits (d = 0.22, 95% confidence interval 0.16 to 0.28) that became substantially smaller after accounting for key moderators (that is, active control and baseline differences; d = 0.13, 95% confidence interval 0.07 to 0.20), and negligible after correcting for publication bias (d = 0.05, 95% confidence interval −0.09 to 0.14). These findings suggest caution in claims and recommendations linking regular physical exercise to cognitive benefits in the healthy human population until more reliable causal evidence accumulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart for study inclusion.
Fig. 2: Evolution of the scientific literature.
Fig. 3: Re-analysis of the meta-analyses included in the umbrella review and influential variables.
Fig. 4: Network interaction among the meta-analyses included in the umbrella review.
Fig. 5: Assessment of publication bias across the meta-analyses included in the umbrella review.
Fig. 6: Specification curve of meta-analytic models.

Similar content being viewed by others

Data availability

Data used to support the conclusions of this study are available at the OSF repository: https://osf.io/e9zqf/.

Code availability

Codes used for the analyses presented here are available at the OSF repository: https://osf.io/e9zqf/.

References

  1. Sallis, J. F. et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet 387, 2207–2217 (2016).

    PubMed  Google Scholar 

  2. Guiney, H. & Machado, L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon. Bull. Rev. 20, 73–86 (2013).

    PubMed  Google Scholar 

  3. Ding, D. et al. Physical activity guidelines 2020: comprehensive and inclusive recommendations to activate populations. Lancet 396, 1780–1782 (2020).

    CAS  PubMed  Google Scholar 

  4. Bull, F. C. et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54, 1451–1462 (2020).

    PubMed  Google Scholar 

  5. Basso, J. C. & Suzuki, W. A. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plast. 2, 127–152 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Tomporowski, P. D. & Pesce, C. Exercise, sports, and performance arts benefit cognition via a common process. Psychol. Bull. 145, 929 (2019).

    PubMed  Google Scholar 

  7. Angevaren, M., Aufdemkampe, G., Verhaar, H., Aleman, A. & Vanhees, L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD005381.pub3 (2008).

  8. Young, J., Angevaren, M., Rusted, J. & Tabet, N. Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst. Rev. 4, 1–117 (2015).

  9. Ludyga, S., Gerber, M., Pühse, U., Looser, V. N. & Kamijo, K. Systematic review and meta-analysis investigating moderators of long-term effects of exercise on cognition in healthy individuals. Nat. Hum. Behav. 4, 603–612 (2020).

    PubMed  Google Scholar 

  10. Verburgh, L., Konigs, M., Scherder, E. J. A. & Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br. J. Sports Med. 48, 973–979 (2014).

    PubMed  Google Scholar 

  11. Singh, A. S. et al. Effects of physical activity interventions on cognitive and academic performance in children and adolescents: a novel combination of a systematic review and recommendations from an expert panel. Br. J. Sports Med. 53, 640–647 (2019).

    PubMed  Google Scholar 

  12. Diamond, A. & Ling, D. S. Aerobic-exercise and resistance-training interventions have been among the least effective ways to improve executive functions of any method tried thus far. Dev. Cogn. Neurosci. 37, 100572 (2019).

    PubMed  Google Scholar 

  13. Erickson, K. I. et al. Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Med. Sci. Sports Exerc. 51, 1242–1251 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults a meta-analytic study. Psychol. Sci. 14, 125–130 (2003).

    PubMed  Google Scholar 

  15. Smith, P. J. et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom. Med. 72, 239–252 (2010).

    PubMed  PubMed Central  Google Scholar 

  16. Scherder, E. et al. Executive functions of sedentary elderly may benefit from walking: a systematic review and meta-analysis. Am. J. Geriatr. Psychiatry 22, 782–791 (2014).

    PubMed  Google Scholar 

  17. Lindheimer, J. B., O’Connor, P. J. & Dishman, R. K. Quantifying the placebo effect in psychological outcomes of exercise training: a meta-analysis of randomized trials. Sports Med. 45, 693–711 (2015).

    PubMed  Google Scholar 

  18. Jackson, W. M., Davis, N., Sands, S. A., Whittington, R. A. & Sun, L. S. Physical activity and cognitive development: a meta-analysis. J. Neurosurg. Anesthesiol. 28, 373–380 (2016).

    PubMed  Google Scholar 

  19. Barha, C. K., Davis, J. C., Falck, R. S., Nagamatsu, L. S. & Liu-Ambrose, T. Sex differences in exercise efficacy to improve cognition: a systematic review and meta-analysis of randomized controlled trials in older humans. Front. Neuroendocrinol. 46, 71–85 (2017).

    PubMed  Google Scholar 

  20. Rathore, A. & Lom, B. The effects of chronic and acute physical activity on working memory performance in healthy participants: a systematic review with meta-analysis of randomized controlled trials. Syst. Rev. 6, 1–16 (2017).

    CAS  Google Scholar 

  21. Northey, J. M., Cherbuin, N., Pumpa, K. L., Smee, D. J. & Rattray, B. Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52, 154–160 (2018).

    PubMed  Google Scholar 

  22. Falck, R. S., Davis, J. C., Best, J. R., Crockett, R. A. & Liu-Ambrose, T. Impact of exercise training on physical and cognitive function among older adults: a systematic review and meta-analysis. Neurobiol. Aging 79, 119–130 (2019).

    PubMed  Google Scholar 

  23. Sanders, L. M., Hortobagyi, T., la Bastide-van Gemert, S., van der Zee, E. A. & van Heuvelen, M. J. Dose–response relationship between exercise and cognitive function in older adults with and without cognitive impairment: a systematic review and meta-analysis. PLoS ONE 14, e0210036 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xue, Y., Yang, Y. & Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: a systematic review with meta-analysis. Br. J. Sports Med. 53, 1397–1404 (2019).

    PubMed  Google Scholar 

  25. Gasquoine, P. G. & Chen, P.-Y. Effect of physical exercise on popular measures of executive function in older, nonclinical, participants of randomized controlled trials: a meta-analytic review. Appl. Neuropsychol. Adult. 29, 203–211 (2020).

  26. Xiong, J., Ye, M., Wang, L. & Zheng, G. Effects of physical exercise on executive function in cognitively healthy older adults: a systematic review and meta-analysis of randomized controlled trials. Int. J. Nurs. Stud. 114, 103810 (2021).

    PubMed  Google Scholar 

  27. Chen, F.-T. et al. Effects of exercise training interventions on executive function in older adults: a systematic review and meta-analysis. Sports Med. 50, 1451–1467 (2020).

    PubMed  PubMed Central  Google Scholar 

  28. Haverkamp, B. F. et al. Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: a meta-analysis. J. Sports Sci. 38, 2637–2660 (2020).

    PubMed  Google Scholar 

  29. Hoffmann, C. M., Petrov, M. E. & Lee, R. E. Aerobic physical activity to improve memory and executive function in sedentary adults without cognitive impairment: a systematic review and meta-analysis. Prev. Med. Rep. 23, 101496 (2021).

    PubMed  PubMed Central  Google Scholar 

  30. Zhidong, C., Wang, X., Yin, J., Song, D. & Chen, Z. Effects of physical exercise on working memory in older adults: a systematic and meta-analytic review. Eur. Rev. Aging Phys. Act. 18, 1–15 (2021).

    Google Scholar 

  31. Amatriain-Fernández, S., Ezquerro García-Noblejas, M. & Budde, H. Effects of chronic exercise on the inhibitory control of children and adolescents: a systematic review and meta-analysis. Scand. J. Med. Sci. Sports 31, 1196–1208 (2021).

    PubMed  Google Scholar 

  32. Meli, A. M., Ali, A., Mhd Jalil, A. M., Mohd Yusof, H. & Tan, M. M. Effects of physical activity and micronutrients on cognitive performance in children aged 6 to 11 years: a systematic review and meta-analysis of randomized controlled trials. Medicina 58, 57 (2021).

    PubMed  PubMed Central  Google Scholar 

  33. Zhao, Y. et al. Physical activity and cognition in sedentary older adults: a systematic review and meta-analysis. J. Alzheimers Dis. 87, 957–968 (2022).

    PubMed  PubMed Central  Google Scholar 

  34. Aghjayan, S. L. et al. Aerobic exercise improves episodic memory in late adulthood: a systematic review and meta-analysis. Commun. Med. 2, 1–11 (2022).

    Google Scholar 

  35. Colcombe, S. J. et al. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl Acad. Sci. USA 101, 3316–3321 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lakes, K. D. & Hoyt, W. T. Promoting self-regulation through school-based martial arts training. J. Appl. Dev. Psychol. 25, 283–302 (2004).

    Google Scholar 

  37. Muscari, A. et al. Chronic endurance exercise training prevents aging-related cognitive decline in healthy older adults: a randomized controlled trial. Int. J. Geriatr. Psychiatry 25, 1055–1064 (2010).

    PubMed  Google Scholar 

  38. Voss, M. W. et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2, 32 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Voss, M. W. et al. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum. Brain Mapp. 34, 2972–2985 (2013).

    PubMed  Google Scholar 

  40. Vidoni, E. D. et al. Effect of aerobic exercise on amyloid accumulation in preclinical Alzheimer’s: a 1-year randomized controlled trial. PLoS ONE 16, e0244893 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. León, J., Ureña, A., Bolaños, M. J., Bilbao, A. & Oña, A. A combination of physical and cognitive exercise improves reaction time in persons 61–84 years old. J. Aging Phys. Act. 23, 72–77 (2015).

    PubMed  Google Scholar 

  42. Bouaziz, W. et al. Effects of a short-term interval aerobic training programme with active recovery bouts (IATP-R) on cognitive and mental health, functional performance and quality of life: a randomised controlled trial in sedentary seniors. Int. J. Clin. Pract. 73, e13219 (2019).

    PubMed  Google Scholar 

  43. Sink, K. M. et al. Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: the LIFE randomized trial. JAMA 314, 781–790 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lind, R. R. et al. Improved cognitive performance in preadolescent Danish children after the school-based physical activity programme “FIFA 11 for Health” for Europe—a cluster-randomised controlled trial. Eur. J. Sport Sci. 18, 130–139 (2018).

    PubMed  Google Scholar 

  45. Ansai, J. H. & Rebelatto, J. R. Effect of two physical exercise protocols on cognition and depressive symptoms in oldest-old people: a randomized controlled trial. Geriatrics Gerontol. Int. 15, 1127–1134 (2015).

    Google Scholar 

  46. Sterne, J. A. & Egger, M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J. Clin. Epidemiol. 54, 1046–1055 (2001).

    CAS  PubMed  Google Scholar 

  47. Vevea, J. L. & Hedges, L. V. A general linear model for estimating effect size in the presence of publication bias. Psychometrika 60, 419–435 (1995).

    Google Scholar 

  48. Stanley, T. D., Doucouliagos, H., Ioannidis, J. P. & Carter, E. C. Detecting publication selection bias through excess statistical significance. Res. Synth. Methods 12, 776–795 (2021).

    CAS  PubMed  Google Scholar 

  49. Stanley, T. D. & Doucouliagos, H. Meta-regression approximations to reduce publication selection bias. Res. Synth. Methods 5, 60–78 (2014).

    CAS  PubMed  Google Scholar 

  50. Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. B. Med. J. 315, 629–634 (1997).

    CAS  Google Scholar 

  51. Rodgers, M. A. & Pustejovsky, J. E. Evaluating meta-analytic methods to detect selective reporting in the presence of dependent effect sizes. Psychol. Methods 26, 141 (2021).

    Google Scholar 

  52. Bartoš, F., Maier, M., Wagenmakers, E.-J., Doucouliagos, H. & Stanley, T. D. Robust Bayesian meta-analysis: model-averaging across complementary publication bias adjustment methods. Res. Synth. Methods 14, 99–116 (2021).

    Google Scholar 

  53. Simonsohn, U., Simmons, J. P. & Nelson, L. D. Specification curve analysis. Nat. Hum. Behav. 4, 1208–1214 (2020).

    PubMed  Google Scholar 

  54. Coen, R. F., Lawlor, B. A. & Kenny, R. Failure to demonstrate that memory improvement is due either to aerobic exercise or increased hippocampal volume. Proc. Natl Acad. Sci. USA 108, E89–E89 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chu, J. S. & Evans, J. A. Slowed canonical progress in large fields of science. Proc. Natl Acad. Sci. USA 118, e2021636118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).

  57. Errington, T. M. et al. Investigating the replicability of preclinical cancer biology. eLife 10, e71601 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Camerer, C. F. et al. Evaluating replicability of laboratory experiments in economics. Science 351, 1433–1436 (2016).

    CAS  PubMed  Google Scholar 

  59. Camerer, C. F. et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2, 637–644 (2018).

    PubMed  Google Scholar 

  60. Zotcheva, E. et al. Effects of 5 years aerobic exercise on cognition in older adults: the generation 100 study: a randomized controlled trial. Sports Med. 52, 1689–1699 (2022).

    PubMed  Google Scholar 

  61. Kvarven, A., Strømland, E. & Johannesson, M. Comparing meta-analyses and preregistered multiple-laboratory replication projects. Nat. Hum. Behav. 4, 423–434 (2020).

    PubMed  Google Scholar 

  62. Rockwood, K. & Middleton, L. Physical activity and the maintenance of cognitive function. Alzheimers Dement. 3, S38–S44 (2007).

    PubMed  Google Scholar 

  63. Belsky, D. W. et al. Cardiorespiratory fitness and cognitive function in midlife: neuroprotection or neuroselection?: fitness and cognitive function. Ann. Neurol. 77, 607–617 (2015).

    PubMed  PubMed Central  Google Scholar 

  64. Lau, J., Ioannidis, J. P. & Schmid, C. H. Summing up evidence: one answer is not always enough. Lancet 351, 123–127 (1998).

    CAS  PubMed  Google Scholar 

  65. Pogue, J. & Yusuf, S. Overcoming the limitations of current meta-analysis of randomised controlled trials. Lancet 351, 47–52 (1998).

    CAS  PubMed  Google Scholar 

  66. Hunter, J. E. & Schmidt, F. L. Methods of Meta-analysis: Correcting Error and Bias in Research Findings (Sage, 2004).

  67. Simonsohn, U., Simmons, J. & Nelson, L. D. Above averaging in literature reviews. Nat. Rev. Psychol. 1, 551–552 (2022).

    Google Scholar 

  68. Carter, E. C., Schönbrodt, F. D., Gervais, W. M. & Hilgard, J. Correcting for bias in psychology: a comparison of meta-analytic methods. Adv. Methods Pract. Psychol. Sci. 2, 115–144 (2019).

    Google Scholar 

  69. Maass, A. et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage 131, 142–154 (2016).

    CAS  PubMed  Google Scholar 

  70. Gow, A. J. et al. Neuroprotective lifestyles and the aging brain: activity, atrophy, and white matter integrity. Neurology 79, 1802–1808 (2012).

    PubMed  Google Scholar 

  71. Stranahan, A. M. et al. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19, 951–961 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Christie, B. R. et al. Exercising our brains: how physical activity impacts synaptic plasticity in the dentate gyrus. Neuromol. Med. 10, 47–58 (2008).

    CAS  Google Scholar 

  73. Stummer, W., Weber, K., Tranmer, B., Baethmann, A. & Kempski, O. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke 25, 1862–1869 (1994).

    CAS  PubMed  Google Scholar 

  74. Cotman, C. W., Berchtold, N. C. & Christie, L.-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007).

    CAS  PubMed  Google Scholar 

  75. Farmer, J. et al. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague–Dawley rats in vivo. Neuroscience 124, 71–79 (2004).

    CAS  PubMed  Google Scholar 

  76. Tarumi, T. & Zhang, R. The role of exercise-induced cardiovascular adaptation in brain health. Exerc. Sport Sci. Rev. 43, 181–189 (2015).

    PubMed  Google Scholar 

  77. McMorris, T. (ed.) Exercise–Cognition Interaction: Neuroscience Perspectives (Academic Press, 2016).

  78. Mann, D. T., Williams, A. M., Ward, P. & Janelle, C. M. Perceptual-cognitive expertise in sport: a meta-analysis. J. Sport Exerc. Psychol. 29, 457–478 (2007).

    PubMed  Google Scholar 

  79. Simons, D. J. et al. Do “brain-training” programs work? Psychol. Sci. Public Interest 17, 103–186 (2016).

    PubMed  Google Scholar 

  80. Román-Caballero, R., Sanabria, D. & Ciria, L. F. Let’s go beyond “the effect of”: reappraising the impact of ordinary activities on cognition. Psicológica 44, e15144 (2023).

  81. Gavelin, H. M. et al. Combined physical and cognitive training for older adults with and without cognitive impairment: a systematic review and network meta-analysis of randomized controlled trials. Ageing Res. Rev. 66, 101232 (2021).

    PubMed  Google Scholar 

  82. Ekkekakis, P. Why is exercise underutilized in clinical practice despite evidence it is effective? Lessons in pragmatism from the inclusion of exercise in guidelines for the treatment of depression in the British National Health Service. Kinesiol. Rev. 10, 29–50 (2020).

    Google Scholar 

  83. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

  84. Morris, S. B. Estimating effect sizes from pretest-posttest-control group designs. Organ. Res. Methods 11, 364–386 (2008).

    Google Scholar 

  85. Hedges, L. V., Tipton, E. & Johnson, M. C. Robust variance estimation in meta-regression with dependent effect size estimates. Res. Synth. Methods 1, 39–65 (2010).

    PubMed  Google Scholar 

  86. Fisher, Z., Tipton, E., Zhipeng, H. & Fisher, M. Z. Package ‘robumeta’ (2017).

  87. Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. Introduction to Meta-analysis (John Wiley & Sons, 2021).

  88. Pustejovsky, J. E. & Rodgers, M. A. Testing for funnel plot asymmetry of standardized mean differences. Res. Synth. Methods 10, 57–71 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a postdoctoral fellowship from the Junta de Andalucía to L.F.C. (DOC00225), a predoctoral fellowship from the Spanish Ministry of Education, Culture and Sport (FPU17/02864), and a research grant from the Junta de Andalucía (PY20_00693) to R.R.-C., a research grant from the Community of Madrid and the Rey Juan Carlos University (V-1159) to A.L.-C., and two research grants from the Spanish Ministry of Economy and Competitiveness awarded to M.A.V. (PID2020-118583GB-I00) and to D.S. (PID2019-105635GB-I00). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.F.C., M.A.V., D.H., A.L.-C., P.P. and D.S. were involved in the original conceptualization. L.F.C., R.R.-C., M.A.V., D.H., A.L.-C., P.P. and D.S. were responsible for developing the study methodology. L.F.C., D.H. and D.S. did the literature search. L.F.C., R.R.-C., M.A.V., D.H., A.L.-C., P.P. and D.S. were responsible for data curation. R.R.-C. and M.A.V. did the formal statistical analysis. L.F.C., R.R.-C., D.H. and D.S. wrote the original draft. M.A.V., D.H., A.L.-C. and P.P. edited and reviewed the manuscript.

Corresponding authors

Correspondence to Luis F. Ciria or Daniel Sanabria.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Michel Audiffren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Table 1 and method details.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciria, L.F., Román-Caballero, R., Vadillo, M.A. et al. An umbrella review of randomized control trials on the effects of physical exercise on cognition. Nat Hum Behav 7, 928–941 (2023). https://doi.org/10.1038/s41562-023-01554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-023-01554-4

  • Springer Nature Limited

This article is cited by

Navigation