Skip to main content
Log in

Feedbacks between phytoplankton and nutrient cycles in a warming ocean

  • Review Article
  • Published:

From Nature Geoscience

View current issue Submit your manuscript

Abstract

Climate warming increasingly drives changes in large-scale ocean physics and biogeochemistry, and affects the kinetics of biological reactions. Together these factors govern phytoplankton productivity, thereby shaping the responses of ocean carbon and nutrient cycles to global change. Here we bring together results from experimental, observational and modelling studies to highlight how interactive feedbacks between warming and nutrient limitation can affect the responses of biogeochemically critical marine primary producers. The availability of many bioactive elements in seawater will be altered markedly in the future, thereby shifting resource deficiencies. These modifications to nutrient limitation when compounded by concurrent warming can change phytoplankton optimum growth temperatures and elemental use efficiencies in group-specific and nutrient-specific ways. The biogeochemical impacts of these nutrient and warming interactions reflect a distinction between the thermal reactivity of major cellular structural elements like nitrogen (N) and catalytic micronutrients like iron (Fe). Integrating the mechanistic feedbacks between warming, nutrient availability and primary productivity into Earth system models is necessary to improve confidence in projections of ocean biogeochemical cycle transformations in a changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Projected poleward shifts in distributions of biogeochemically important phytoplankton functional groups with extreme warming.
Fig. 2: Idealized temperature response curves for growth and metabolic rates relative to nutrient availability in phytoplankton.
Fig. 3: Effects of warming on phytoplankton IUEs.
Fig. 4: Phytoplankton PUEs increase linearly with temperature.
Fig. 5: Developing improved ESMs of ocean warming and nutrient interactions.

Similar content being viewed by others

References

  1. Cooley, S. R., Klinsky, S., Morrow, D. R. & Satterfield, T. Sociotechnical considerations about ocean carbon dioxide removal. Annu. Rev. Mar. Sci. 15, 41–66 (2023).

    Google Scholar 

  2. Hutchins, D. A. et al. Responses of globally important phytoplankton groups to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement. Biogeosciences 20, 4669–4682 (2023).

    CAS  Google Scholar 

  3. Moore, M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    CAS  Google Scholar 

  4. Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–587 (IPCC, Cambridge Univ. Press, 2019).

  5. Rohr, T., Richardson, A. J., Lenton, A., Chamberlain, M. A. & Shadwick, E. H. Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models. Commun. Earth Environ. 4, 212 (2023).

    Google Scholar 

  6. Tagliabue, A. et al. Persistent uncertainties in ocean net primary production climate change projections at regional scales raise challenges for assessing impacts on ecosystem services. Front. Clim. https://doi.org/10.3389/fclim.2021.738224 (2021).

    Article  Google Scholar 

  7. Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (IPCC, Cambridge Univ. Press, 2021).

  8. Cooley, S. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 379–550 (IPCC, Cambridge Univ. Press, 2022).

  9. Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    CAS  Google Scholar 

  10. Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    Google Scholar 

  11. Kling, J. D. et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 14, 413–424 (2020).

    CAS  Google Scholar 

  12. Sallee, J. B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).

    CAS  Google Scholar 

  13. Meredith, M. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 203–320 (IPCC, Cambridge Univ. Press, 2019).

  14. Jickells, T. D. et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Glob. Biogeochem. Cycles 31, 289–305 (2017).

    CAS  Google Scholar 

  15. König, D., Conway, T. M., Hamilton, D. S. & Tagliabue, A. Surface ocean biogeochemistry regulates the impact of anthropogenic aerosol Fe deposition on the cycling of iron and iron isotopes in the North Pacific. Geophys. Res. Lett. 49, e2022GL098016 (2022).

    Google Scholar 

  16. Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Annu. Rev. Mar. Sci. 14, 303–330 (2022).

    Google Scholar 

  17. Gutiérrez, J. M. et al. (eds) IPCC WGI Interactive Atlas (IPCC, Cambridge Univ. Press, 2021); http://interactive-atlas.ipcc.ch/

  18. Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).

    Google Scholar 

  19. Seferian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95–119 (2020).

    Google Scholar 

  20. Ward, B. A., Cael, B. B., Collins, S. & Young, C. R. Selective constraints on global plankton dispersal. Proc. Natl Acad. Sci. USA 118, e2007388118 (2021).

    CAS  Google Scholar 

  21. Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–27(2018).

    Google Scholar 

  22. Hutchins, D. A. & Sanudo-Wilhelmy, S. A. The enzymology of ocean global change. Annu. Rev. Mar. Sci. 14, 187–211(2022).

    Google Scholar 

  23. Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).

    CAS  Google Scholar 

  24. Taucher, J. et al. Enhanced silica export in a future ocean triggers global diatom decline. Nature 605, 696–700 (2022).

    CAS  Google Scholar 

  25. O’Brien, C. J., Vogt, M. & Gruber, N. Global coccolithophore diversity: drivers and future change. Prog. Oceanogr. 140, 27–42 (2016).

    Google Scholar 

  26. Harada, N. et al. Enhancement of coccolithophorid blooms in the Bering Sea by recent environmental changes. Glob. Biogeochem. Cycles 26, GB2036 (2012).

    Google Scholar 

  27. Krumhardt, K. M., Lovenduski, N. S., Freeman, N. M. & Bates, N. R. Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014. Biogeosciences 13, 1163–1177 (2016).

    CAS  Google Scholar 

  28. Smith, H. E. et al. The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt. Biogeosciences 14, 4905–4925 (2017).

    CAS  Google Scholar 

  29. Gibbs, S. J. et al. Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change. Geology 44, 59–62 (2016).

    Google Scholar 

  30. Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822 (2016).

    Google Scholar 

  31. Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).

    CAS  Google Scholar 

  32. Tong, S., Gao, K. & Hutchins, D. A. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1000 generations of selection under elevated CO2. Glob. Chang. Biol. 24, 3055–3064 (2018).

    Google Scholar 

  33. Hutchins, D. A. & Capone, D. G. The ocean nitrogen cycle: new developments and global change. Nat. Rev. Microbiol. 20, 401–414 (2022).

    CAS  Google Scholar 

  34. Wrightson, L., Mahaffey, C., Yang, N., Hutchins, D. A. & Tagliabue, A. Integrating the impact of global change on the niche and physiology of marine nitrogen-fixing cyanobacteria. Glob. Chang. Biol. 28, 7078–7093 (2022).

    CAS  Google Scholar 

  35. Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    CAS  Google Scholar 

  36. Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    CAS  Google Scholar 

  37. Fu, F.-X. et al. Differing responses of marine N2-fixers to warming and consequences for future diazotroph community structure. Aquat. Microb. Ecol. 72, 33–46 (2014).

    Google Scholar 

  38. Anderson, S. I. & Rynearson, T. A. Variability approaching the thermal limits can drive diatom community dynamics. Limnol. Oceanogr. 65, 1961–1973 (2020).

    CAS  Google Scholar 

  39. Kling, J. D. et al. Dual thermal ecotypes co-exist within a nearly genetically-identical population of the unicellular marine cyanobacterium Synechococcus. Proc. Natl Acad. Sci. USA 120, e2315701120 (2023).

    CAS  Google Scholar 

  40. O'Donnell, D. R. et al. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob. Chang. Biol. 24, 4554–4565 (2018).

    Google Scholar 

  41. Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Chang. 4, 1024–1030 (2014).

    Google Scholar 

  42. Qu, P.-P. et al. Two co-dominant nitrogen-fixing cyanobacteria demonstrate distinct acclimation and adaptation responses to cope with ocean warming. Environ. Microbiol. Rep. 14, 203–217 (2022).

    CAS  Google Scholar 

  43. Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  44. Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).

    CAS  Google Scholar 

  45. Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).

    CAS  Google Scholar 

  46. Yvon-Durocher, G., Dossena, M., Trimmer, M., Woodward, G. & Allen, A. P. Temperature and the biogeography of algal stoichiometry. Glob. Ecol. Biogeogr. 24, 562–570 (2015).

    Google Scholar 

  47. Daines, S. J., Clark, S. R. & Lenton, T. M. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N:P ratio. Ecol. Lett. 17, 414–425 (2014).

    Google Scholar 

  48. Moreno, A. R., Hagstrom, G. I., Primeau, F. W., Levin, S. A. & Martiny, A. C. Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2. Biogeosciences 15, 2761–2779 (2018).

    CAS  Google Scholar 

  49. Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron–nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).

    Google Scholar 

  50. Liefer, J. D. et al. The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. Front. Microbiol. 10, 763 (2019).

    Google Scholar 

  51. Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Chang. 3, 979–984 (2013).

    CAS  Google Scholar 

  52. Zhang, Y. et al. Growth-dependent changes in elemental stoichiometry and macromolecular allocation in the coccolithophore Emiliania huxleyi under different environmental conditions. Limnol. Oceanogr. 66, 2999–3009 (2021).

    CAS  Google Scholar 

  53. Armin, G. & Inomura, K. Modeled temperature dependencies of macromolecular allocation and elemental stoichiometry in phytoplankton. Comput. Struct. Biotechnol. J. 19, 5421–5427 (2021).

    CAS  Google Scholar 

  54. Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).

    Google Scholar 

  55. Anderson, S. I. et al. The interactive effects of temperature and nutrients on a spring phytoplankton community. Limnol. Oceanogr. 67, 634–645 (2022).

    Google Scholar 

  56. Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Chang. Biol. 23, 3269–3280 (2017).

    Google Scholar 

  57. Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Chang. 9, 148–152 (2019).

    CAS  Google Scholar 

  58. Zhu, Z. et al. A comparative study of iron and temperature interactive effects on diatoms and Phaeocystis antarctica from the Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 550, 39–51 (2016).

    CAS  Google Scholar 

  59. Jabre, L. & Bertrand, E. M. Interactive effects of iron and temperature on the growth of Fragilariopsis cylindrus. Limnol. Oceanogr. Lett. 5, 363–370 (2020).

    CAS  Google Scholar 

  60. Sunda, W. G. & Huntsman, S. A. Interactive effects of light and temperature on iron limitation in a marine diatom: implications for marine productivity and carbon cycling. Limnol. Oceanogr. 56, 1475–1488 (2011).

    CAS  Google Scholar 

  61. Jabre, L. et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc. Natl Acad. Sci. USA 118, e2107238118 (2021).

    CAS  Google Scholar 

  62. Jiang, H.-B. et al. Ocean warming alleviates iron limitation of marine nitrogen fixation. Nat. Clim. Chang. 8, 709–712 (2018).

    CAS  Google Scholar 

  63. Yang, N. et al. Warming iron-limited oceans enhance nitrogen fixation and drive biogeographic specialization of the globally important cyanobacterium Crocosphaera. Front. Mar. Sci. 8, 628363 (2021).

    Google Scholar 

  64. Qu, P. et al. Distinct responses of Trichodesmium to a thermally-variable environment as a function of phosphorus availability. Front. Microbiol. 10, 1282 (2019).

    Google Scholar 

  65. Feng, Y., Roleda, M. Y., Armstrong, E., Boyd, P. W. & Hurd, C. L. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 62, 519–540 (2017).

    Google Scholar 

  66. Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).

    CAS  Google Scholar 

  67. Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).

    Google Scholar 

  68. Bopp, L. et al. Diazotrophy as a key driver of the response of marine net primary productivity to climate change. Biogeosciences 19, 4267–4285 (2022).

    CAS  Google Scholar 

  69. Hutchins, D. A. & Fu, F. X. Microorganisms and ocean global change. Nat. Microbiol. 2, 17508 (2017).

    Google Scholar 

  70. Tagliabue, A. et al. An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change. Glob. Chang. Biol. 26, 6168–6179 (2020).

    Google Scholar 

  71. Seifert, M. et al. Interaction matters: bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change. Glob. Chang. Glob. Chang. Biol. 29, 4234–4258 (2023).

    CAS  Google Scholar 

  72. Browning, T. J. et al. Persistent equatorial Pacific iron limitation under ENSO forcing. Nature 621, 330–335 (2023).

    CAS  Google Scholar 

  73. Ryan-Keogh, T. J., Thomalla, S. J., Monteiro, P. M. S. & Tagliabue, A. Multidecadal trend of increasing iron stress in Southern Ocean phytoplankton. Science 379, 834–840 (2023).

    CAS  Google Scholar 

  74. Ustick, L. J. et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science 372, 287–291 (2021).

    CAS  Google Scholar 

  75. Tagliabue, A. ‘Oceans are hugely complex’: modelling marine microbes is key to climate forecasts. Nature 623, 250–252 (2023).

    CAS  Google Scholar 

  76. Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with Biogeochemical-Argo. Ann. Rev. Mar. Sci. 12, 23–48 (2020).

    Google Scholar 

  77. Dodas, E. M., Anderson, R. F. & Jeandel, C. GEOTRACES international program: open access database of seawater trace metal and isotope data available. Mar. Technol. Soc. J. 56, 130–131 (2022).

    Google Scholar 

  78. Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

    CAS  Google Scholar 

  79. Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change - a review. Glob. Chang. Biol. 24, 2239–2261 (2018).

    Google Scholar 

  80. Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).

    CAS  Google Scholar 

  81. Casey, J. R. et al. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. Sci. Adv. 8, eabl4930 (2022).

    CAS  Google Scholar 

  82. Geider, R. J. & La Roche, J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).

    Google Scholar 

  83. Finkel, Z. V. et al. Phylogenetic diversity in the macromolecular composition of microalgae. PLoS ONE 11, e0155977 (2016).

    Google Scholar 

  84. Inomura, K. et al. A mechanistic model of macromolecular allocation, elemental stoichiometry, and growth rate in phytoplankton. Front. Microbiol. 11, 86 (2020).

    Google Scholar 

Download references

Acknowledgements

Grant support was provided by US National Science Foundation grants OCE 2149837 and OCE 1851222 to D.A.H., and UK NERC NE/Y004531/1 to A.T. Thanks to P. P. Qu and Y. Y. Feng for assistance with data replotting.

Author information

Authors and Affiliations

Authors

Contributions

D.A.H. and A.T. contributed equally to researching, writing and revising this Review.

Corresponding authors

Correspondence to David A. Hutchins or Alessandro Tagliabue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Keisuke Inomura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Glossary of specialized terms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutchins, D.A., Tagliabue, A. Feedbacks between phytoplankton and nutrient cycles in a warming ocean. Nat. Geosci. 17, 495–502 (2024). https://doi.org/10.1038/s41561-024-01454-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-024-01454-w

  • Springer Nature Limited

Navigation