Abstract
Climate warming increasingly drives changes in large-scale ocean physics and biogeochemistry, and affects the kinetics of biological reactions. Together these factors govern phytoplankton productivity, thereby shaping the responses of ocean carbon and nutrient cycles to global change. Here we bring together results from experimental, observational and modelling studies to highlight how interactive feedbacks between warming and nutrient limitation can affect the responses of biogeochemically critical marine primary producers. The availability of many bioactive elements in seawater will be altered markedly in the future, thereby shifting resource deficiencies. These modifications to nutrient limitation when compounded by concurrent warming can change phytoplankton optimum growth temperatures and elemental use efficiencies in group-specific and nutrient-specific ways. The biogeochemical impacts of these nutrient and warming interactions reflect a distinction between the thermal reactivity of major cellular structural elements like nitrogen (N) and catalytic micronutrients like iron (Fe). Integrating the mechanistic feedbacks between warming, nutrient availability and primary productivity into Earth system models is necessary to improve confidence in projections of ocean biogeochemical cycle transformations in a changing climate.
Similar content being viewed by others
References
Cooley, S. R., Klinsky, S., Morrow, D. R. & Satterfield, T. Sociotechnical considerations about ocean carbon dioxide removal. Annu. Rev. Mar. Sci. 15, 41–66 (2023).
Hutchins, D. A. et al. Responses of globally important phytoplankton groups to olivine dissolution products and implications for carbon dioxide removal via ocean alkalinity enhancement. Biogeosciences 20, 4669–4682 (2023).
Moore, M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–587 (IPCC, Cambridge Univ. Press, 2019).
Rohr, T., Richardson, A. J., Lenton, A., Chamberlain, M. A. & Shadwick, E. H. Zooplankton grazing is the largest source of uncertainty for marine carbon cycling in CMIP6 models. Commun. Earth Environ. 4, 212 (2023).
Tagliabue, A. et al. Persistent uncertainties in ocean net primary production climate change projections at regional scales raise challenges for assessing impacts on ecosystem services. Front. Clim. https://doi.org/10.3389/fclim.2021.738224 (2021).
Fox-Kemper, B. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1211–1362 (IPCC, Cambridge Univ. Press, 2021).
Cooley, S. et al. in Climate Change 2022: Impacts, Adaptation, and Vulnerability (eds Pörtner, H.-O. et al.) 379–550 (IPCC, Cambridge Univ. Press, 2022).
Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).
Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Kling, J. D. et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 14, 413–424 (2020).
Sallee, J. B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).
Meredith, M. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 203–320 (IPCC, Cambridge Univ. Press, 2019).
Jickells, T. D. et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Glob. Biogeochem. Cycles 31, 289–305 (2017).
König, D., Conway, T. M., Hamilton, D. S. & Tagliabue, A. Surface ocean biogeochemistry regulates the impact of anthropogenic aerosol Fe deposition on the cycling of iron and iron isotopes in the North Pacific. Geophys. Res. Lett. 49, e2022GL098016 (2022).
Hamilton, D. S. et al. Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Annu. Rev. Mar. Sci. 14, 303–330 (2022).
Gutiérrez, J. M. et al. (eds) IPCC WGI Interactive Atlas (IPCC, Cambridge Univ. Press, 2021); http://interactive-atlas.ipcc.ch/
Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).
Seferian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95–119 (2020).
Ward, B. A., Cael, B. B., Collins, S. & Young, C. R. Selective constraints on global plankton dispersal. Proc. Natl Acad. Sci. USA 118, e2007388118 (2021).
Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–27(2018).
Hutchins, D. A. & Sanudo-Wilhelmy, S. A. The enzymology of ocean global change. Annu. Rev. Mar. Sci. 14, 187–211(2022).
Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).
Taucher, J. et al. Enhanced silica export in a future ocean triggers global diatom decline. Nature 605, 696–700 (2022).
O’Brien, C. J., Vogt, M. & Gruber, N. Global coccolithophore diversity: drivers and future change. Prog. Oceanogr. 140, 27–42 (2016).
Harada, N. et al. Enhancement of coccolithophorid blooms in the Bering Sea by recent environmental changes. Glob. Biogeochem. Cycles 26, GB2036 (2012).
Krumhardt, K. M., Lovenduski, N. S., Freeman, N. M. & Bates, N. R. Apparent increase in coccolithophore abundance in the subtropical North Atlantic from 1990 to 2014. Biogeosciences 13, 1163–1177 (2016).
Smith, H. E. et al. The influence of environmental variability on the biogeography of coccolithophores and diatoms in the Great Calcite Belt. Biogeosciences 14, 4905–4925 (2017).
Gibbs, S. J. et al. Ocean warming, not acidification, controlled coccolithophore response during past greenhouse climate change. Geology 44, 59–62 (2016).
Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822 (2016).
Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).
Tong, S., Gao, K. & Hutchins, D. A. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1000 generations of selection under elevated CO2. Glob. Chang. Biol. 24, 3055–3064 (2018).
Hutchins, D. A. & Capone, D. G. The ocean nitrogen cycle: new developments and global change. Nat. Rev. Microbiol. 20, 401–414 (2022).
Wrightson, L., Mahaffey, C., Yang, N., Hutchins, D. A. & Tagliabue, A. Integrating the impact of global change on the niche and physiology of marine nitrogen-fixing cyanobacteria. Glob. Chang. Biol. 28, 7078–7093 (2022).
Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).
Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).
Fu, F.-X. et al. Differing responses of marine N2-fixers to warming and consequences for future diazotroph community structure. Aquat. Microb. Ecol. 72, 33–46 (2014).
Anderson, S. I. & Rynearson, T. A. Variability approaching the thermal limits can drive diatom community dynamics. Limnol. Oceanogr. 65, 1961–1973 (2020).
Kling, J. D. et al. Dual thermal ecotypes co-exist within a nearly genetically-identical population of the unicellular marine cyanobacterium Synechococcus. Proc. Natl Acad. Sci. USA 120, e2315701120 (2023).
O'Donnell, D. R. et al. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob. Chang. Biol. 24, 4554–4565 (2018).
Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Chang. 4, 1024–1030 (2014).
Qu, P.-P. et al. Two co-dominant nitrogen-fixing cyanobacteria demonstrate distinct acclimation and adaptation responses to cope with ocean warming. Environ. Microbiol. Rep. 14, 203–217 (2022).
Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).
Martiny, A. C. et al. Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nat. Geosci. 6, 279–283 (2013).
Yvon-Durocher, G., Dossena, M., Trimmer, M., Woodward, G. & Allen, A. P. Temperature and the biogeography of algal stoichiometry. Glob. Ecol. Biogeogr. 24, 562–570 (2015).
Daines, S. J., Clark, S. R. & Lenton, T. M. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N:P ratio. Ecol. Lett. 17, 414–425 (2014).
Moreno, A. R., Hagstrom, G. I., Primeau, F. W., Levin, S. A. & Martiny, A. C. Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2. Biogeosciences 15, 2761–2779 (2018).
Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron–nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).
Liefer, J. D. et al. The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. Front. Microbiol. 10, 763 (2019).
Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Chang. 3, 979–984 (2013).
Zhang, Y. et al. Growth-dependent changes in elemental stoichiometry and macromolecular allocation in the coccolithophore Emiliania huxleyi under different environmental conditions. Limnol. Oceanogr. 66, 2999–3009 (2021).
Armin, G. & Inomura, K. Modeled temperature dependencies of macromolecular allocation and elemental stoichiometry in phytoplankton. Comput. Struct. Biotechnol. J. 19, 5421–5427 (2021).
Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).
Anderson, S. I. et al. The interactive effects of temperature and nutrients on a spring phytoplankton community. Limnol. Oceanogr. 67, 634–645 (2022).
Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Chang. Biol. 23, 3269–3280 (2017).
Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Chang. 9, 148–152 (2019).
Zhu, Z. et al. A comparative study of iron and temperature interactive effects on diatoms and Phaeocystis antarctica from the Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 550, 39–51 (2016).
Jabre, L. & Bertrand, E. M. Interactive effects of iron and temperature on the growth of Fragilariopsis cylindrus. Limnol. Oceanogr. Lett. 5, 363–370 (2020).
Sunda, W. G. & Huntsman, S. A. Interactive effects of light and temperature on iron limitation in a marine diatom: implications for marine productivity and carbon cycling. Limnol. Oceanogr. 56, 1475–1488 (2011).
Jabre, L. et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc. Natl Acad. Sci. USA 118, e2107238118 (2021).
Jiang, H.-B. et al. Ocean warming alleviates iron limitation of marine nitrogen fixation. Nat. Clim. Chang. 8, 709–712 (2018).
Yang, N. et al. Warming iron-limited oceans enhance nitrogen fixation and drive biogeographic specialization of the globally important cyanobacterium Crocosphaera. Front. Mar. Sci. 8, 628363 (2021).
Qu, P. et al. Distinct responses of Trichodesmium to a thermally-variable environment as a function of phosphorus availability. Front. Microbiol. 10, 1282 (2019).
Feng, Y., Roleda, M. Y., Armstrong, E., Boyd, P. W. & Hurd, C. L. Environmental controls on the growth, photosynthetic and calcification rates of a Southern Hemisphere strain of the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 62, 519–540 (2017).
Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).
Frémont, P. et al. Restructuring of plankton genomic biogeography in the surface ocean under climate change. Nat. Clim. Chang. 12, 393–401 (2022).
Bopp, L. et al. Diazotrophy as a key driver of the response of marine net primary productivity to climate change. Biogeosciences 19, 4267–4285 (2022).
Hutchins, D. A. & Fu, F. X. Microorganisms and ocean global change. Nat. Microbiol. 2, 17508 (2017).
Tagliabue, A. et al. An iron cycle cascade governs the response of equatorial Pacific ecosystems to climate change. Glob. Chang. Biol. 26, 6168–6179 (2020).
Seifert, M. et al. Interaction matters: bottom-up driver interdependencies alter the projected response of phytoplankton communities to climate change. Glob. Chang. Glob. Chang. Biol. 29, 4234–4258 (2023).
Browning, T. J. et al. Persistent equatorial Pacific iron limitation under ENSO forcing. Nature 621, 330–335 (2023).
Ryan-Keogh, T. J., Thomalla, S. J., Monteiro, P. M. S. & Tagliabue, A. Multidecadal trend of increasing iron stress in Southern Ocean phytoplankton. Science 379, 834–840 (2023).
Ustick, L. J. et al. Metagenomic analysis reveals global-scale patterns of ocean nutrient limitation. Science 372, 287–291 (2021).
Tagliabue, A. ‘Oceans are hugely complex’: modelling marine microbes is key to climate forecasts. Nature 623, 250–252 (2023).
Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with Biogeochemical-Argo. Ann. Rev. Mar. Sci. 12, 23–48 (2020).
Dodas, E. M., Anderson, R. F. & Jeandel, C. GEOTRACES international program: open access database of seawater trace metal and isotope data available. Mar. Technol. Soc. J. 56, 130–131 (2022).
Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).
Boyd, P. W. et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change - a review. Glob. Chang. Biol. 24, 2239–2261 (2018).
Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).
Casey, J. R. et al. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology. Sci. Adv. 8, eabl4930 (2022).
Geider, R. J. & La Roche, J. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).
Finkel, Z. V. et al. Phylogenetic diversity in the macromolecular composition of microalgae. PLoS ONE 11, e0155977 (2016).
Inomura, K. et al. A mechanistic model of macromolecular allocation, elemental stoichiometry, and growth rate in phytoplankton. Front. Microbiol. 11, 86 (2020).
Acknowledgements
Grant support was provided by US National Science Foundation grants OCE 2149837 and OCE 1851222 to D.A.H., and UK NERC NE/Y004531/1 to A.T. Thanks to P. P. Qu and Y. Y. Feng for assistance with data replotting.
Author information
Authors and Affiliations
Contributions
D.A.H. and A.T. contributed equally to researching, writing and revising this Review.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Keisuke Inomura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Glossary of specialized terms.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Hutchins, D.A., Tagliabue, A. Feedbacks between phytoplankton and nutrient cycles in a warming ocean. Nat. Geosci. 17, 495–502 (2024). https://doi.org/10.1038/s41561-024-01454-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41561-024-01454-w
- Springer Nature Limited