Skip to main content

Advertisement

Log in

Urgent need for post-growth climate mitigation scenarios

  • Comment
  • Published:

From Nature Energy

View current issue Submit your manuscript

Established climate mitigation scenarios assume continued economic growth in all countries, and reconcile this with the Paris targets by betting on speculative technological change. Post-growth approaches may make it easier to achieve rapid mitigation while improving social outcomes, and should be explored by climate modellers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Leimbach, M., Kriegler, E., Roming, N. & Schwanitz, J. Global Environ. Chang. 42, 215–225 (2017).

    Article  Google Scholar 

  2. Banerjee, R. et al. Global Energy Assessment - Toward a Sustainable Future: Summary for Policymakers (Cambridge University Press, 2012).

  3. Hickel, J. & Kallis, G. New Polit. Econ. 25, 469–486 (2020).

    Article  Google Scholar 

  4. Jackson, T. Prosperity without growth: Foundations for the economy of tomorrow (Routledge, 2017).

  5. Steinberger, J. K., Lamb, W. F. & Sakai, M. Environ. Res. Lett. 15, 044016 (2020).

    Article  Google Scholar 

  6. Millward-Hopkins, J., Steinberger, J. K., Rao, N. D. & Oswald, Y. Global Environ. Chang. 65, 102168 (2020).

    Article  Google Scholar 

  7. Nieto, J., Carpintero, Ó., Miguel, L. J. & de Blas, I. Energ. Policy 137, 111090 (2020).

    Article  Google Scholar 

  8. Anderson, K., Broderick, J. F. & Stoddard, I. Clim. Policy 20, 1290–1304 (2020).

    Article  Google Scholar 

  9. Le Quéré, C. et al. Nat. Clim. Change 9, 213–217 (2019).

    Article  Google Scholar 

  10. Creutzig, F. et al. Glob. Change Biol. Bioenergy 13, 510–515 (2021).

    Article  Google Scholar 

  11. Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).

    Article  Google Scholar 

  12. De Coninck, H. & Benson, S. M. Annu. Rev. Environ. Resour. 39, 243–270 (2014).

    Article  Google Scholar 

  13. Negative emission technologies: what role in meeting Paris agreement targets? EASAC Policy Report 35 (European Academies Science Advisory Council, 2018).

  14. Larkin, A., Kuriakose, J., Sharmina, M. & Anderson, K. Clim. Policy 18, 690–714 (2017).

    Article  Google Scholar 

  15. van Vuuren, D. P., Hof, A. F., van Sluisveld, M. A. E. & Riahi, K. Nat. Energy 2, 902–904 (2017).

    Article  Google Scholar 

  16. Grubler, A. et al. Nat. Energy 3, 515–527 (2018).

    Article  Google Scholar 

  17. Brockway, P. E., Sorrell, S. R., Semieniuk, G., Heun, M. K. & Court, V. Renew. Sustain. Energy Rev. 141, 110781 (2021).

    Article  Google Scholar 

  18. Haberl, H. et al. Environ. Res. Lett. 15, 065003 (2020).

    Article  Google Scholar 

  19. Ward, J. D. et al. Plos One 11, e0164733 (2016).

    Article  Google Scholar 

  20. Keen, S., Ayres, R. U. & Standish, R. Ecol. Econ. 157, 40–46 (2019).

    Article  Google Scholar 

  21. Heun, M. K. & Brockway, P. E. Appl. Energ. 251, 112697 (2019).

    Article  Google Scholar 

  22. Fix, B. Biophys. Econ. Resour. Qual. 4, 6 (2019).

    Article  Google Scholar 

  23. Lange, S., Pohl, J. & Santarius, T. Ecol. Econ. 176, 106760 (2020).

    Article  Google Scholar 

  24. Kallis, G. et al. Annu. Rev. Environ. Resour. 43, 291–316 (2018).

    Article  Google Scholar 

  25. Kuhnhenn, K., da Costa, L. F. C., Mahnke, E., Schneider, L. & Lange, S. A societal transformation scenario for staying below 1.5°C (Heinrich-Böll-Stiftung, 2020).

  26. Steckel, J. C., Brecha, R. J., Jakob, M., Strefler, J. & Luderer, G. Ecol. Econ. 90, 53–67 (2013).

    Article  Google Scholar 

  27. Semieniuk, G., Taylor, L., Rezai, A. & Foley, D. K. Nat. Clim. Change 11, 313–318 (2021).

    Article  Google Scholar 

  28. Pye, S. et al. Clim. Policy 21, 222–231 (2021).

    Article  Google Scholar 

  29. O’Neill, B. C. et al. Glob. Environ. Chang. 42, 169–180 (2017).

    Article  Google Scholar 

  30. D’Alessandro, S., Luzzati, T. & Morroni, M. J. Clean. Prod. 18, 291–298 (2010).

    Article  Google Scholar 

  31. D’Alessandro, S., Cieplinski, A., Distefano, T. & Dittmer, K. Nat. Sustain. 3, 329–335 (2020).

    Article  Google Scholar 

  32. Haberl, H. et al. Nat. Sustain. 2, 173–184 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

G.K. and A.S. acknowledge the financial support of the Spanish Ministry of Science, Innovation and Universities, through the ‘Maria de Maeztu’ programme for Units of Excellence (CEX2019-000940-M). P.B.’s time was funded by the UK Research and Innovation Council, supported under EPSRC Fellowship award EP/R024254/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Hickel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickel, J., Brockway, P., Kallis, G. et al. Urgent need for post-growth climate mitigation scenarios. Nat Energy 6, 766–768 (2021). https://doi.org/10.1038/s41560-021-00884-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-021-00884-9

  • Springer Nature Limited

This article is cited by

Navigation