Skip to main content

Advertisement

Log in

Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation

  • Matters Arising
  • Published:

From Nature Ecology & Evolution

View current issue Submit your manuscript

Matters Arising to this article was published on 16 November 2020

The Original Article was published on 03 February 2020

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Danovaro, R. et al. Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nat. Ecol. Evol. 4, 181–192 (2020).

    Article  Google Scholar 

  2. Appeltans, W. et al. The magnitude of global marine species diversity. Curr. Biol. 22, 2189–2202 (2012).

    Article  CAS  Google Scholar 

  3. Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).

    Article  CAS  Google Scholar 

  4. Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).

    Article  Google Scholar 

  5. Corinaldesi, C. New perspectives in benthic deep-sea microbial ecology. Front. Mar. Sci. 2, https://doi.org/10.3389/fmars.2015.00017 (2015).

  6. Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).

    CAS  PubMed  Google Scholar 

  7. López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).

    Article  Google Scholar 

  8. Schoenle, A., Nitsche, F., Werner, J. & Arndt, H. Deep-sea ciliates: recorded diversity and experimental studies on pressure tolerance. Deep Sea Res. Pt I 128, 55–66 (2017).

    Article  CAS  Google Scholar 

  9. Turley, C. Bacteria in the cold deep-sea benthic boundary layer and sediment—water interface of the NE Atlantic. FEMS Microbiol. Ecol. 33, 89–99 (2000).

    CAS  PubMed  Google Scholar 

  10. Wei, C.-L. et al. Global patterns and predictions of seafloor biomass using random forests. PLoS ONE 5, e15323 (2010).

    Article  CAS  Google Scholar 

  11. Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments 2nd edn (Springer, 2009).

  12. Fenchel, T. Ecology of Protozoa: The Biology of Free-Living Phagotropic Protists (Springer, 2013).

  13. Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).

    Article  Google Scholar 

  14. Nascimento, F. J. A., Naslund, J. & Elmgren, R. Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol. Oceanogr. 57, 338–346 (2012).

    Article  CAS  Google Scholar 

  15. Bonaglia, S., Nascimento, F. J. A., Bartoli, M., Klawonn, I. & Brüchert, V. Meiofauna increases bacterial denitrification in marine sediments. Nat. Commun. 5, 5133 (2014).

    Article  CAS  Google Scholar 

  16. Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).

    Article  Google Scholar 

  17. Balsamo, M., Semprucci, F., Frontalini, F. & Coccioni, R. in Marine Ecosystems (ed. Cruzado, A.) 77–104 (InTech, 2012).

  18. Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).

    Article  Google Scholar 

  19. Zeppilli, D. et al. Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar. Biodivers. 45, 505–535 (2015).

    Article  Google Scholar 

  20. Carugati, L., Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Metagenetic tools for the census of marine meiofaunal biodiversity: an overview. Mar. Genom. 24, 11–20 (2015).

    Article  Google Scholar 

  21. Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, https://doi.org/10.3389/fmars.2016.00213 (2016).

  22. Dell’Anno, A., Carugati, L., Corinaldesi, C., Riccioni, G. & Danovaro, R. Unveiling the biodiversity of deep-sea nematodes through metabarcoding: are we ready to bypass the classical taxonomy? PLoS ONE 10, e0144928 (2015).

    Article  Google Scholar 

  23. Kitahashi, T., Watanabe, H. K., Tsuchiya, M., Yamamoto, H. & Yamamoto, H. A new method for acquiring images of meiobenthic images using the FlowCAM. MethodsX 5, 1330–1335 (2018).

    Article  Google Scholar 

  24. Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T. & Wilding, T. A. Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. Mol. Ecol. Resour. 14, 1129–1140 (2014).

    Article  CAS  Google Scholar 

  25. Bik, H. M. et al. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 27, 233–243 (2012).

    Article  Google Scholar 

  26. Fenchel, T. The ecology of marine microbenthos IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna commuities with special reference to the ciliated protozoa. Ophelia 6, 1–182 (1969).

    Article  Google Scholar 

  27. Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).

    Article  Google Scholar 

  28. Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean—challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).

    Article  Google Scholar 

  29. Schoenle, A. et al. Methodological studies on estimates of abundance and diversity of heterotrophic flagellates from the deep-sea floor. J. Mar. Sci. Eng. 4, 22 (2016).

    Article  Google Scholar 

  30. Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H.A. was supported by the German Research Foundation (grant numbers AR 288/23, MerMet 17-97 and MerMet 71-11). We thank R. Danovaro et al. for an open exchange of ideas during the preparation of this Matters Arising.

Author information

Authors and Affiliations

Authors

Contributions

J.I., D.Z. and A.V. initiated the Matters Arising. J.I. led the writing and all authors contributed to the writing and the development of the Matters Arising and its final form. J.I. produced the final agreed edited version.

Corresponding author

Correspondence to Jeroen Ingels.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingels, J., Vanreusel, A., Pape, E. et al. Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nat Ecol Evol 5, 27–29 (2021). https://doi.org/10.1038/s41559-020-01335-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01335-6

  • Springer Nature Limited

This article is cited by

Navigation