Abstract
Hypotheses about the origin of eukaryotic cells are classically framed within the context of a universal ‘tree of life’ based on conserved core genes. Vigorous ongoing debate about eukaryote origins is based on assertions that the topology of the tree of life depends on the taxa included and the choice and quality of genomic data analysed. Here we have reanalysed the evidence underpinning those claims and apply more data to the question by using supertree and coalescent methods to interrogate >3,000 gene families in archaea and eukaryotes. We find that eukaryotes consistently originate from within the archaea in a two-domains tree when due consideration is given to the fit between model and data. Our analyses support a close relationship between eukaryotes and Asgard archaea and identify the Heimdallarchaeota as the current best candidate for the closest archaeal relatives of the eukaryotic nuclear lineage.
Similar content being viewed by others
Data availability
The data associated with our analyses are available in the FigShare repository90 at https://doi.org/10.6084/m9.figshare.8950859.v2.
Change history
19 October 2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
References
Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).
Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Phil. Trans. R. Soc. Lond. B 370, 20140330 (2015).
Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).
Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).
Williams, T., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).
Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).
Kurland, C. G., Collins, L. J. & Penny, D. Genomics and the irreducible nature of eukaryote cells. Science 312, 1011–1014 (2006).
Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999).
Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008).
Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. Lond. B 364, 2197–2207 (2009).
Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).
Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).
Williams, T., Foster, P. G., Nye, T. M. W., Cox, C. J. & Embley, T. M. A congruent phylogenomic signal places eukaryotes within the Archaea. Proc. Biol. Sci. 279, 4870–4879 (2012).
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).
Lake, J., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786–3790 (1984).
Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).
Williams, T. A., Embley, T. M., Williams, T. A. & Embley, T. M. Changing ideas about eukaryotic origins. Phil. Trans. R. Soc. Lond. B 370, 20140318 (2015).
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).
Hartman, H. & Fedorov, A. The origin of the eukaryotic cell: a genomic investigation. Proc. Natl Acad. Sci. USA 99, 1420–1425 (2002).
Da Cunha, V., Gaia, M., Gadelle, D., Nasir, A. & Forterre, P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 13, e1006810 (2017).
Gaia, M., Da Cunha, V. & Forterre, P. in Molecular Mechanisms of Microbial Evolution (ed. Rampelotto, P. H.) 55–99 (Springer, 2018).
Da Cunha, V., Gaia, M., Nasir, A. & Forterre, P. Asgard archaea do not close the debate about the universal tree of life topology. PLoS Genet. 14, e1007215 (2018).
Spang, A. et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 14, e1007080 (2018).
Hirt, R. P. et al. Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl Acad. Sci. USA 96, 580–585 (1999).
Lartillot, N., Brinkmann, H. & Philippe, H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol. Biol. 7 (Suppl. 1), S4 (2007).
Bergsten, J. A review of long-branch attraction. Cladistics 21, 163–193 (2005).
Nasir, A., Kim, K. M., Da Cunha, V. & Caetano-Anollés, G. Arguments reinforcing the three-domain view of diversified cellular life. Archaea 2016, 1851865 (2016).
Penny, D., McComish, B. J., Charleston, M. A. & Hendy, M. D. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. 53, 711–723 (2001).
Harish, A. & Kurland, C. G. Empirical genome evolution models root the tree of life. Biochimie 138, 137–155 (2017).
Philippe, H. & Forterre, P. The rooting of the universal tree of life is not reliable. J. Mol. Evol. 49, 509–523 (1999).
Harish, A. & Kurland, C. G. Akaryotes and Eukaryotes are independent descendants of a universal common ancestor. Biochimie 138, 168–183 (2017).
Yang, S., Doolittle, R. F. & Bourne, P. E. Phylogeny determined by protein domain content. Proc. Natl Acad. Sci. USA 102, 373–378 (2005).
Caetano-Anolles, G. An evolutionarily structured universe of protein architecture. Genome Res. 13, 1563–1571 (2003).
Mayr, E. Two empires or three? Proc. Natl Acad. Sci. USA 95, 9720–9723 (1998).
Narrowe, A. B. et al. Complex evolutionary history of translation Elongation Factor 2 and diphthamide biosynthesis in Archaea and parabasalids. Genome Biol. Evol. 10, 2380–2393 (2018).
Brochier, C., Forterre, P. & Gribaldo, S. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol. 5, R17 (2004).
Brochier, C., Gribaldo, S., Zivanovic, Y., Confalonieri, F. & Forterre, P. Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol. 6, R42 (2005).
Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320 (2008).
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Lartillot, N. & Philippe, H. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol. Biol. Evol. 21, 1095–1109 (2004).
Foster, P. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004).
Zhou, Y., Brinkmann, H., Rodrigue, N., Lartillot, N. & Philippe, H. A dirichlet process covarion mixture model and its assessments using posterior predictive discrepancy tests. Mol. Biol. Evol. 27, 371–384 (2010).
Lartillot, N. L., Odrigue, N. I. R., Tubbs, D. A. S. & Icher, J. A. R. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 62, 611–615 (2013).
Bollback, J. P. Bayesian model adequacy and choice in phylogenetics. Mol. Biol. Evol. 19, 1171–1180 (2002).
Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).
Hrdy, I. et al. Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432, 618–622 (2004).
Whelan, S. Spatial and temporal heterogeneity in nucleotide sequence evolution. Mol. Biol. Evol. 25, 1683–1694 (2008).
Gouy, R., Baurain, D. & Philippe, H. Rooting the tree of life: the phylogenetic jury is still out. Phil. Trans. R. Soc. Lond. B 370, 20140329 (2015).
Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously-evolved sequence alignments. Syst. Biol. https://doi.org/10.1093/sysbio/syz051 (2019).
Graybeal, A. Is it better to add taxa or characters to a difficult phylogenetic problem? Syst. Biol. 47, 9–17 (1998).
Hedtke, S. M., Townsend, T. M. & Hillis, D. M. Resolution of phylogenetic conflict in large data sets by increased taxon sampling. Syst. Biol. 55, 522–529 (2006).
Castelle, C. J. & Banfield, J. F. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell 172, 1181–1197 (2018).
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
Roth, A. C. J., Gonnet, G. H. & Dessimoz, C. Algorithm of OMA for large-scale orthology inference. BMC Bioinform. 9, 518 (2008).
Altenhoff, A. M. et al. Standardized benchmarking in the quest for orthologs. Nat. Methods 13, 425–430 (2016).
Williams, T. A. & Embley, T. M. Archaeal ‘dark matter’ and the origin of eukaryotes. Genome Biol. Evol. 6, 474–481 (2014).
Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).
Roch, S. & Steel, M. Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theor. Popul. Biol. 100C, 56–62 (2015).
Roch, S., Nute, M. & Warnow, T. Long-branch attraction in species tree estimation: inconsistency of partitioned likelihood and topology-based summary methods. Syst. Biol. 68, 281–297 (2019).
Steel, M. & Rodrigo, A. Maximum-likelihood supertrees. Syst. Biol. 57, 243–250 (2008).
Akanni, W. A., Wilkinson, M., Creevey, C. J., Foster, P. G. & Pisani, D. Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics. R. Soc. Open Sci. 2, 140436 (2015).
Zhang, C., Sayyari, E. & Mirarab, S. in Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science Vol . 10562 (eds Meidanis, J. & Nakhleh, L.) 53–75 (Springer, 2017).
Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989).
Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).
Fournier, G. P. & Gogarten, J. P. Rooting the ribosomal tree of life. Mol. Biol. Evol. 27, 1792–1801 (2010).
Lake, J., Skophammer, R. G., Herbold, C. W. & Servin, J. Genome beginnings: rooting the tree of life. Phil. Trans. R. Soc. Lond. B 364, 2177–2185 (2009).
Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 19 (2006).
Williams, T. A. et al. New substitution models for rooting phylogenetic trees. Phil. Trans. R. Soc. Lond. B 370, 20140336 (2015).
Klopfstein, S., Vilhelmsen, L. & Ronquist, F. A nonstationary Markov model detects directional evolution in hymenopteran morphology. Syst. Biol. 64, 1089–1103 (2015).
Cherlin, S. et al. The effect of non-reversibility on inferring rooted phylogenies. Mol. Biol. Evol. 35, 984–1002 (2018).
Tria, F. D. K., Landan, G. & Dagan, T. Phylogenetic rooting using minimal ancestor deviation. Nat. Ecol. Evol. 1, 0193 (2017).
Szöllõsi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).
Timmis, J. N., Ayliffe, Ma, Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123–135 (2004).
McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12, 449–455 (2014).
Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).
Brown, J. R. & Doolittle, W. F. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc. Natl Acad. Sci. USA 92, 2441–2445 (1995).
Zhaxybayeva, O., Lapierre, P. & Gogarten, J. P. Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227, 53–64 (2005).
Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).
Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).
Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).
Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
Williams, T. et al. Data from ‘Phylogenomics provides robust support for a two-domains tree of life’ (Figshare, 2019); https://doi.org/10.6084/m9.figshare.8950859.v2
Williams, T. A. et al. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl Acad. Sci. USA 114, E4602–E4611 (2017).
Acknowledgements
T.A.W. is supported by a Royal Society University Research Fellowship and the NERC (grant no. NE/P00251X/1). G.J.S. received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 714774 and grant no. GINOP-2.3.2.−15-2016-00057). P.G.F. received funding from the NERC (grant no. NE/M015831/1). C.J.C. received Portuguese national funds from the Foundation for Science and Technology (project no. UID/Multi/04326/2019) and the Portuguese node of ELIXIR, specifically BIODATA.PT ALG-01-0145-FEDER-022231. We thank G. Coleman for assistance with Fig. 2.
Author information
Authors and Affiliations
Contributions
All authors contributed to the conception and design of the project and to the interpretation of results. T.A.W., C.J.C., P.G.F. and G.J.S. performed analyses. T.A.W. and T.M.E. wrote the manuscript, with input from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–17, Tables 1–15 and Discussion.
Rights and permissions
About this article
Cite this article
Williams, T.A., Cox, C.J., Foster, P.G. et al. Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol 4, 138–147 (2020). https://doi.org/10.1038/s41559-019-1040-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41559-019-1040-x
- Springer Nature Limited
This article is cited by
-
Evolution of optimal growth temperature in Asgard archaea inferred from the temperature dependence of GDP binding to EF-1A
Nature Communications (2024)
-
Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics
Nature Communications (2024)
-
The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA
Journal of Molecular Evolution (2024)
-
Why is the sky blue? A new question for political science
Sustainability Science (2024)
-
The nature of the last universal common ancestor and its impact on the early Earth system
Nature Ecology & Evolution (2024)