Skip to main content
Log in

Evolutionary determinants of genome-wide nucleotide composition

  • Brief Communication
  • Published:

From Nature Ecology & Evolution

View current issue Submit your manuscript

Abstract

One of the long-standing mysteries of evolutionary genomics is the source of the wide phylogenetic diversity in genome nucleotide composition (G + C versus A + T), which must be a consequence of interspecific differences in mutation bias, the efficiency of selection for different nucleotides or a combination of the two. We demonstrate that although genomic G + C composition is strongly driven by mutation bias, it is also substantially modified by direct selection and/or as a by-product of biased gene conversion. Moreover, G + C composition at fourfold redundant sites is consistently elevated above the neutral expectation—more so than for any other class of sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Relationship between genome-wide nucleotide composition and the neutral expectation.
Fig. 2: Expected equilibrium levels of within-population nucleotide diversity scaled by the neutral expectation.

Similar content being viewed by others

References

  1. Sueoka, N. Proc. Natl Acad. Sci. USA 48, 582–592 (1962).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Gu, X., Hewett-Emmett, D. & Li, W. H. Genetica 102–103, 383–391 (1998).

    Article  PubMed  Google Scholar 

  3. Chen, S. L., Lee, W., Hottes, A. K., Shapiro, L. & McAdams, H. H. Proc. Natl Acad. Sci. USA 101, 3480–3485 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lynch, M. The Origin of Genome Architecture. Sinauer Associates: Sunderland, 2007.

  5. Rocha, E. P. C. & Feil, E. J. PLoS Genet. 6, e1001104 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hershberg, R. & Petrov, D. A. PLoS Genet. 6, e1001115 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hildebrand, F., Meyer, A. & Eyre-Walker, A. PLoS Genet. 6, e1001107 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lynch, M. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lynch, M. et al. Nat. Rev. Genet. 17, 704–714 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Li, W. H. J. Mol. Evol. 24, 337–345 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Bulmer, M. Genetics 129, 897–907 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  12. McVean, G. A. T. & Charlesworth, B. Genet. Res. 74, 145–158 (1999).

    Article  Google Scholar 

  13. Raghavan, R., Kelkar, Y. D. & Ochman, H. Proc. Natl Acad. Sci. USA 109, 14504–14507 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kelkar, Y. D., Phillips, D. S. & Ochman, H. G3 5, 1247–1252 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  15. Marais, G., Mouchiroud, D. & Duret, L. Genet. Res. 81, 79–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L. M. Nature 454, 479–485 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Galtier, N., Duret, L., Glemin, S. & Ranwez, V. Trends Genet. 25, 1–5 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Pessia, E. et al. Genome Biol. Evol. 4, 675–682 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Williams, A. L. et al. eLife 4, e04637 (2015).

    Article  PubMed Central  Google Scholar 

  20. Mugal, C. F., Weber, C. C. & Ellegren, H. Bioessays 37, 1317–1326 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Lassalle, F. et al. PLoS. Genet. 11, e1004941 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lynch, M. Proc. Natl Acad. Sci. USA 109, 18851–18856 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Long, H. et al. Genome Biol. Evol. 8, 3815–3821 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. McKenna, A. et al. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. DePristo, M. A. et al. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Van der Auwera, G. A. et al. Curr. Protoc. Bioinformatics 43, 11.10.1–33 (2013).

    Google Scholar 

  27. Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Brief. Bioinform. 14, 178–192 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support was provided by the Multidisciplinary University Research Initiative awards W911NF-09-1-0444 and W911NF-14-1-0411 from the US Army Research Office to M.L., National Institutes of Health awards R01-GM036827 and R35-GM122566 to M.L., National Natural Science Foundation of China 31741071 to H.L., R01-GM51986 and R35-GM122556 to Y.V.B., F32-GM083581 to D.T.K. and National Science Foundation grant DOB 1442246 to J.T.L. We thank T. G. Doak, P. Keightley, K. Morris, R. Ness, I. Ruiz-Trillo, S. Simpson, W. K. Thomas, A. Uchimura and Z. Ye for providing strains and/or technical help in data acquisition. We thank L. Duret for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

H.L., W.S., and M.L. conceived and designed the study, performed the data analyses and wrote the manuscript. All authors contributed to data collection and provided input to the manuscript.

Corresponding author

Correspondence to Michael Lynch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Tables 1–6

Table 1 shows details of mutation datasets used in this study. Tables 2 and 3 list mutations from 12 microbial organisms that are first reported here. Table 4 shows results of linear regressions involving genome G/C content vs the expectations based on mutation bias. Table 5 gives parameters from regressions of selection coefficients at different genomic sites, as well as those of selection coefficients vs the mutation bias m. Table 6 shows the relationship between expression level and G/C content within 17 organisms.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, H., Sung, W., Kucukyildirim, S. et al. Evolutionary determinants of genome-wide nucleotide composition. Nat Ecol Evol 2, 237–240 (2018). https://doi.org/10.1038/s41559-017-0425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0425-y

  • Springer Nature Limited

This article is cited by

Navigation