Skip to main content
Log in

meta-Selective C–H arylation of phenols via regiodiversion of electrophilic aromatic substitution

  • Article
  • Published:

From Nature Chemistry

View current issue Submit your manuscript

Abstract

Electrophilic aromatic substitution is among the most widely used mechanistic manifolds in organic chemistry. Access to certain substitution patterns is, however, precluded by intrinsic and immutable substituent effects that ultimately restrict the diversity of the benzenoid chemical space. Here we demonstrate that the established regioselectivity of electrophilic aromatic substitution can be overcome simply by diverting the key σ-complex intermediate towards otherwise inaccessible substitution products. This ‘regiodiversion’ strategy is realized through the development of a general and concise method for the meta-selective C–H arylation of sterically congested phenols. Consisting of a Bi(V)-mediated electrophilic arylation and a subsequent aryl migration/rearomatization, our process is orthogonal to conventional C–H activation and cross-coupling approaches, and does not require prefunctionalization of the substrate. Mechanistically informed applications in synthesis showcase its utility as a versatile and enabling route to highly functionalized, contiguously substituted aromatic building blocks that defy synthesis via existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Origins, consequences and diversion of EAS regioselectivity.
Fig. 2: Proof of principle and reaction development.
Fig. 3: Mechanistic analysis of σ-complex regiodiversion.
Fig. 4: Synthetic applications of meta-selective C–H arylation.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Taylor, R. Electrophilic Aromatic Substitution (John Wiley & Sons, Inc., 1990).

  2. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Scott, K. A. et al. A structural analysis of the FDA Green Book-approved veterinary drugs and roles in human medicine. J. Med. Chem. 63, 15449–15482 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Mortier, J. Arene Chemistry: Reaction Mechanisms and Methods for Aromatic Compounds (John Wiley & Sons, Inc., 2016).

  5. Pratihar, S. & Roy, S. Nucleophilicity and site selectivity of commonly used arenes and heteroarenes. J. Org. Chem. 75, 4957–4963 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Kromann, J. C., Jensen, J. H., Kruszyk, M., Jessing, M. & Jørgensen, M. Fast and accurate prediction of the regioselectivity of electrophilic aromatic substitution reactions. Chem. Sci. 9, 660–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Nilova, A., Campeau, L.-C., Sherer, E. C. & Stuart, D. R. Analysis of benzenoid substitution patterns in small molecule active pharmaceutical ingredients. J. Med. Chem. 63, 13389–13396 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  Google Scholar 

  9. Brown, D. G., Gagnon, M. M. & Boström, J. Understanding our love affair with p-chlorophenyl: present day implications from historical biases of reagent selection. J. Med. Chem. 58, 2390–2405 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang, Z. & Lumb, J.-P. Phenol-directed C–H functionalization. ACS Catal. 9, 521–555 (2018).

    Article  Google Scholar 

  12. Jurrat, M., Maggi, L., Lewis, W. & Ball, L. T. Modular bismacycles for the selective C–H arylation of phenols and naphthols. Nat. Chem. 12, 260–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Barton, D. H. R. et al. Comparative arylation reactions with pentaphenylbismuth and with triphenylbismuth carbonate. J. Chem. Soc. Chem. Commun. 1980, 827–829 (1980).

    Article  Google Scholar 

  14. Barton, D. H. R. et al. Pentavalent organobismuth reagents. Part 2. The phenylation of phenols. J. Chem. Soc. Perkin Trans. 1 1985, 2657–2665 (1985).

    Article  Google Scholar 

  15. Barton, D. H. R., Finet, J.-P., Giannotti, C. & Halley, F. The chemistry of pentavalent organobismuth reagents. Part 7. The possible role of radical mechanisms in the phenylation process for bismuth(V), and related lead(IV), iodine(III), and antimony(V) reagents. J. Chem. Soc. Perkin Trans. 1 1987(241), 249 (1987).

    Google Scholar 

  16. Barton, D. H. R. et al. The chemistry of pentavalent organobismuth reagents: Part X. Studies on the phenylation and oxidation of phenols. Tetrahedron 43, 323–332 (1987).

    Article  CAS  Google Scholar 

  17. Wang, Z. in Comprehensive Organic Name Reactions and Reagents (ed. Wang, Z.) 900–904 (John Wiley & Sons, Inc., 2010).

  18. Magdziak, D., Meek, S. J. & Pettus, T. R. R. Cyclohexadienone ketals and quinols: four building blocks potentially useful for enantioselective synthesis. Chem. Rev. 104, 1383–1430 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Quideau, S., Pouységu, L. & Deffieux, D. Oxidative dearomatization of phenols: why, how and what for? Synlett 2008, 467–495 (2008).

    Article  Google Scholar 

  20. Pouységu, L., Deffieux, D. & Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron 66, 2235–2261 (2010).

    Article  Google Scholar 

  21. Ding, Q., Ye, Y. & Fan, R. Recent advances in phenol dearomatization and its application in complex syntheses. Synthesis 45, 1–16 (2013).

    CAS  Google Scholar 

  22. Wu, W.-T., Zhang, L. & You, S.-L. Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives. Chem. Soc. Rev. 45, 1570–1580 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Wirth, T. in Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis (ed. Wirth, T.) 185–208 (Springer, 2003).

  24. Oguma, T. & Katsuki, T. Iron-catalyzed dioxygen-driven C–C bond formation: oxidative dearomatization of 2-naphthols with construction of a chiral quaternary stereocenter. J. Am. Chem. Soc. 134, 20017–20020 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Y. et al. Catalytic asymmetric hydroxylative dearomatization of 2-naphthols: synthesis of lacinilene derivatives. Chem. Sci. 8, 6645–6649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yin, Q. et al. Organocatalytic asymmetric chlorinative dearomatization of naphthols. Chem. Sci. 6, 4179–4183 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vershinin, V., Dyadyuk, A. & Pappo, D. Iron-catalyzed selective oxidative arylation of phenols and biphenols. Tetrahedron 73, 3660–3668 (2017).

    Article  CAS  Google Scholar 

  28. Dyadyuk, A. et al. Direct synthesis of polyaryls by consecutive oxidative cross-coupling of phenols with arenes. Org. Lett. 18, 4324–4327 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Guérard, K. C., Sabot, C., Racicot, L. & Canesi, S. Oxidative Friedel−Crafts reaction and its application to the total syntheses of amaryllidaceae alkaloids. J. Org. Chem. 74, 2039–2045 (2009).

    Article  PubMed  Google Scholar 

  30. Kirste, A., Elsler, B., Schnakenburg, G. & Waldvogel, S. R. Efficient anodic and direct phenol–arene C,C cross-coupling: the benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Quideau, S., Pouységu, L., Ozanne, A. & Gagnepain, J. Oxidative dearomatization of phenols and anilines via λ3- and λ5-iodane-mediated phenylation and oxygenation. Molecules 10, 201–216 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ozanne-Beaudenon, A. & Quideau, S. Regioselective hypervalent-iodine(III)-mediated dearomatizing phenylation of phenols through direct ligand coupling. Angew. Chem. Int. Ed. 44, 7065–7069 (2005).

    Article  CAS  Google Scholar 

  33. Morgan, J. & Pinhey, J. T. Mechanism of arylation of nucleophiles by aryllead triacetates. Part 1. Exclusion of a pathway involving aryl free radicals. J. Chem. Soc. Perkin Trans 1993, 1673–1676 (1993).

    Article  Google Scholar 

  34. Bell, H. C., Pinhey, J. T. & Sternhell, S. The chemistry of aryllead(IV) tricarboxylates. Reaction with phenols. Aust. J. Chem. 32, 1551–1560 (1979).

    Article  CAS  Google Scholar 

  35. Wittig, G. & Clauß, K. Pentaphenyl-wismut. Justus Liebigs Ann. Chem. 578, 136–146 (1952).

    Article  CAS  Google Scholar 

  36. Miller, B. Too many rearrangements of cyclohexadienones. Acc. Chem. Res. 8, 245–256 (1975).

    Article  CAS  Google Scholar 

  37. Shubin, V. G. in Contemporary Problems in Carbonium Ion Chemistry I/II (ed. Rees, C.) 267–341 (Springer, 1984).

  38. He, M. & Swager, T. M. Aryl migration on graphene. J. Am. Chem. Soc. 142, 17876–17880 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Ajaz, A., McLaughlin, E. C., Skraba, S. L., Thamatam, R. & Johnson, R. P. Phenyl shifts in substituted arenes via ipso arenium ions. J. Org. Chem. 77, 9487–9495 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Skraba-Joiner, S. L., Holt, C. J. & Johnson, R. P. Acid-catalyzed rearrangements in arenes: interconversions in the quaterphenyl series. Beilstein J. Org. Chem. 15, 2655–2663 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wan, L., Dastbaravardeh, N., Li, G. & Yu, J.-Q. Cross-coupling of remote meta-C–H bonds directed by a U-shaped template. J. Am. Chem. Soc. 135, 18056–18059 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, P. et al. Ligand-promoted meta-C–H arylation of anilines, phenols, and heterocycles. J. Am. Chem. Soc. 138, 9269–9276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Luo, J., Preciado, S. & Larrosa, I. Overriding orthopara selectivity via a traceless directing group relay strategy: the meta-selective arylation of phenols. J. Am. Chem. Soc. 136, 4109–4112 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, L.-Y., Qiao, J. X., Yeung, K.-S., Ewing, W. R. & Yu, J.-Q. meta-C–H arylation of electron-rich arenes: reversing the conventional site selectivity. J. Am. Chem. Soc. 141, 14870–14877 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luo, J., Preciado, S. & Larrosa, I. Salicylic acids as readily available starting materials for the synthesis of meta-substituted biaryls. Chem. Commun. 51, 3127–3130 (2015).

    Article  CAS  Google Scholar 

  46. Luo, J., Preciado, S., Araromi, S. O. & Larrosa, I. A domino oxidation/arylation/protodecarboxylation reaction of salicylaldehydes: expanded access to meta-arylphenols. Chem. Asian J. 11, 347–350 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C−H activation for the construction of C−B bonds. Chem. Rev. 110, 890–931 (2009).

    Article  Google Scholar 

  48. Ishikawa, S. & Manabe, K. Synthetic method for multifunctionalized oligoarenes using pinacol esters of hydroxyphenylboronic acids. Chem. Commun. 2006, 2589–2591 (2006).

    Article  Google Scholar 

  49. Yoshida, S., Shimomori, K., Nonaka, T. & Hosoya, T. Facile synthesis of diverse multisubstituted ortho-silylaryl triflates via C–H borylation. Chem. Lett. 44, 1324–1326 (2015).

    Article  CAS  Google Scholar 

  50. Sheng, R. et al. Discovery of novel selective GPR120 agonists with potent anti-diabetic activity by hybrid design. Bioorg. Med. Chem. Lett. 28, 2599–2604 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Izawa, Y., Zheng, C. & Stahl, S. S. Aerobic oxidative Heck/dehydrogenation reactions of cyclohexenones: efficient access to meta-substituted phenols. Angew. Chem. Int. Ed. 52, 3672–3675 (2013).

    Article  CAS  Google Scholar 

  52. Vitullo, V. P. & Logue, E. A. Cyclohexadienyl cations. 6. Methyl group isotope effects in the dienone–phenol rearrangement. J. Am. Chem. Soc. 98, 5906–5909 (2002).

    Article  Google Scholar 

  53. Cox, P. A. et al. Base-catalyzed Aryl-B(OH)2 protodeboronation revisited: from concerted proton transfer to liberation of a transient aryl anion. J. Am. Chem. Soc. 139, 13156–13165 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Picaud, S. et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl Acad. Sci. USA 110, 19754–19759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma, H. A., Mennie, K. M., Kwan, E. E. & Jacobsen, E. N. Enantioselective aryl-iodide-catalyzed Wagner–Meerwein rearrangements. J. Am. Chem. Soc. 142, 16090–16096 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bachmann, W. E. & Moser, F. The pinacol–pinacolin rearrangement. The relative migration aptitudes of aryl groups 1. J. Am. Chem. Soc. 54, 1124–1133 (2002).

    Article  Google Scholar 

  57. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (2002).

    Article  Google Scholar 

  58. Bassindale, A. R. & Stout, T. The interaction of electrophilic silanes (Me3SiX, X = ClO4, I, CF3SO3, Br, Cl) with nucleophiles. The nature of silylation mixtures in solution. Tetrahedron Lett. 26, 3403–3406 (1985).

    Article  CAS  Google Scholar 

  59. Blanch, J. H. Determination of the Hammett substituent constants for the 2-, 3-, and 4-pyridyl and -pyridinium groups. J. Chem. Soc. B 1966, 937–939 (1966).

    Article  Google Scholar 

  60. Leffek, K. T., Llewellyn, J. A. & Robertson, R. E. Some deuterium kinetic isotope effects: IV. β-Deuterium effects in water solvolysis of ethyl, isopropyl and tert-butyl compounds. Can. J. Chem. 38, 2171–2177 (1960).

    Article  CAS  Google Scholar 

  61. Cram, D. J. Studies in stereochemistry. I. The stereospecific Wagner–Meerwein rearrangement of the isomers of 3-phenyl-2-butanol. J. Am. Chem. Soc. 71, 3863–3870 (2002).

    Article  Google Scholar 

  62. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, G. et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 136, 10807–10813 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Leitch, J. A. & Frost, C. G. Regioselective transition-metal-catalyzed C–H functionalization of anilines. Synthesis 50, 2693–2706 (2018).

    Article  CAS  Google Scholar 

  65. Goodnow, R. A. et al. Discovery of novel and potent leukotriene B4 receptor antagonists. Part 1. J. Med. Chem. 53, 3502–3516 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Shu, L. et al. Process research on a phenoxybutyric acid LTB4 receptor antagonist. Efficient kilogram-scale synthesis of a 3,5-bisarylphenol core. Org. Process Res. Dev. 17, 114–119 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from K. Butler, S. Aslam and B. Pointer-Gleadhill from the University of Nottingham Analytical Services. This work was supported by the EPSRC Centre for Doctoral Training in Sustainable Chemistry (grant no. EP/S022236/1, studentship to A.S.), Syngenta (studentship to K.R.), UKRI (grant no. MR/V022067/1, Future Leaders Fellowship to L.T.B.) and the University of Nottingham.

Author information

Authors and Affiliations

Authors

Contributions

L.T.B. conceived and directed the project. L.T.B., A.S. and K.R. designed the experiments. A.S. and K.R. carried out the experiments. All the authors analysed the data. L.T.B. wrote the manuscript.

Corresponding author

Correspondence to Liam T. Ball.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–4, discussion, experimental procedures, characterization data and NMR spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senior, A., Ruffell, K. & Ball, L.T. meta-Selective C–H arylation of phenols via regiodiversion of electrophilic aromatic substitution. Nat. Chem. 15, 386–394 (2023). https://doi.org/10.1038/s41557-022-01101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01101-0

  • Springer Nature Limited

This article is cited by

Navigation