Skip to main content
Log in

Polyoxometalates as ligands to synthesize, isolate and characterize compounds of rare isotopes on the microgram scale

  • Article
  • Published:

From Nature Chemistry

View current issue Submit your manuscript

Abstract

The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample—per attempt—which for some isotopes is equivalent to the world’s annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal–ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties. Three curium–POM complexes were prepared, using just 1–10 μg per synthesis of the rare isotope 248Cm3+, and characterized by single-crystal X-ray diffraction, showing an eight-coordinated Cm3+ centre. Moreover, spectrophotometric, fluorescence, NMR and Raman analyses of several f-block element–POM complexes, including 243Am3+ and 248Cm3+, showed otherwise unnoticeable differences between their solution versus solid-state chemistry, and actinide versus lanthanide behaviour. This POM-driven strategy represents a viable path to isolate even rarer complexes, notably with actinium or transcalifornium elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Leveraging POMs to obtain detailed structural information on actinide complexes from microgram quantities.
Fig. 2: Luminescence properties of the W5 POM complexes with trivalent lanthanide and curium ions.
Fig. 3: Absorbance properties of americium and curium ions upon complexation with POMs.
Fig. 4: Steady-state and time-correlated fluorescence properties of lanthanide–POM and curium–POM complexes.
Fig. 5: Luminescence lifetimes of Cm3+ complexes in solution and Cm–POM transition from solution to the solid state.
Fig. 6: SCXRD structures of transplutonium element complexes with POMs.

Similar content being viewed by others

Data availability

All data that support the conclusions in this study are present in the manuscript and/or the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under the following CCDC accession codes: 2105534 (CmPW11-α), 2105535 (CmPW11-β), 2105623 (NdPW11), 2105638 (EuPW11), 2114774 (CmBW11), 2114775 (EuBW11), 2127430 (NdBW11), 2127431 (SmBW11), 2127432 (SmPW11), 2127433 (EuW5) and 2127434 (NdW5). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Roberto, J. B. et al. Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99–116 (2015).

    Article  CAS  Google Scholar 

  2. McMillan, E. & Abelson, P. H. Radioactive element 93. Phys. Rev. 57, 1185–1186 (1940).

    Article  CAS  Google Scholar 

  3. Seaborg, G. T. The transuranium elements. Science 104, 379–386 (1946).

    Article  CAS  Google Scholar 

  4. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. B 72, 171–179 (2016).

    Article  CAS  Google Scholar 

  5. Arnold, P. L., Dutkiewicz, M. S. & Walter, O. Organometallic neptunium chemistry. Chem. Rev. 117, 11460–11475 (2017).

    Article  CAS  Google Scholar 

  6. NIST Inorganic Crystal Structure Database (ICSD) (NIST, 2020); https://doi.org/10.18434/M32147

  7. Silver, M. A. et al. Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state. Science 353, aaf3762 (2016).

    Article  Google Scholar 

  8. Silver, M. A. et al. Electronic structure and properties of berkelium iodates. J. Am. Chem. Soc. 139, 13361–13375 (2017).

    Article  CAS  Google Scholar 

  9. Galley, S. S. et al. Synthesis and characterization of tris-chelate complexes for understanding f-orbital bonding in later actinides. J. Am. Chem. Soc. 141, 2356–2366 (2019).

    Article  CAS  Google Scholar 

  10. Sperling, J. M. et al. Compression of curium pyrrolidine-dithiocarbamate enhances covalency. Nature 583, 396–399 (2020).

    Article  CAS  Google Scholar 

  11. Goodwin, C. A. P. et al. Isolation and characterization of a californium metallocene. Nature 599, 421–424 (2021).

    Article  CAS  Google Scholar 

  12. Ferrier, M. G. et al. Synthesis and characterization of the actinium aquo ion. ACS Cent. Sci. 3, 176–185 (2017).

    Article  CAS  Google Scholar 

  13. Deblonde, G. J.-P., Zavarin, M. & Kersting, A. B. The coordination properties and ionic radius of actinium: a 120-year-old enigma. Coord. Chem. Rev. 446, 214130 (2021).

    Article  CAS  Google Scholar 

  14. Thiele, N. A. & Wilson, J. J. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches. Cancer Biother. Radiopharm. 33, 336–348 (2018).

    Google Scholar 

  15. Kelley, M. P. et al. Revisiting complexation thermodynamics of transplutonium elements up to einsteinium. Chem. Commun. 54, 10578–10581 (2018).

    Article  CAS  Google Scholar 

  16. Deblonde, G. J.-P., Ricano, A. & Abergel, R. J. Ultra-selective ligand-driven separation of strategic actinides. Nat. Commun. 10, 2438 (2019).

    Article  Google Scholar 

  17. Carter, K. P. et al. Structural and spectroscopic characterization of an einsteinium complex. Nature 590, 85–88 (2021).

    Article  CAS  Google Scholar 

  18. Nugent, L. J., Baybarz, R. D., Werner, G. K. & Friedman, H. A. Intramolecular energy transfer and sensitized luminescence in an einsteinium β-diketone chelate and the lower lying electronic energy levels of Es(III). Chem. Phys. Lett. 7, 179–182 (1970).

    Article  CAS  Google Scholar 

  19. Allred, B. E. et al. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. Proc. Natl Acad. Sci. USA 112, 10342–10347 (2015).

    Article  CAS  Google Scholar 

  20. Deblonde, G. J.-P. et al. Chelation and stabilization of berkelium in oxidation state +IV. Nat. Chem. 9, 843–849 (2017).

    Article  CAS  Google Scholar 

  21. Cotruvo, J. A. Jr, Featherston, E. R., Mattocks, J. A., Ho, J. V. & Laremore, T. N. Lanmodulin: a highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. J. Am. Chem. Soc. 140, 15056–15061 (2018).

    Article  Google Scholar 

  22. Cook, E. C., Featherston, E. R., Showalter, S. A. & Cotruvo, J. A. Jr Structural basis for rare earth element recognition by Methylobacterium extorquens lanmodulin. Biochemistry 58, 120–125 (2019).

    Article  CAS  Google Scholar 

  23. Deblonde, G. J.-P. et al. Characterization of americium and curium complexes with the protein lanmodulin: a potential macromolecular mechanism for actinide mobility in the environment. J. Am. Chem. Soc. 143, 15769–15783 (2021).

    Article  CAS  Google Scholar 

  24. Copping, R. et al. Probing the 5f electrons in a plutonyl(VI) cluster complex. Dalton Trans. 29, 5609–5611 (2009).

    Article  Google Scholar 

  25. Sokolova, M. N. et al. Synthesis and structural examination of complexes of Am(IV) and other tetravalent actinides with lacunary heteropolyanion α2-P2W17O6110−. Inorg. Chem. 48, 9185–9190 (2009).

    Article  CAS  Google Scholar 

  26. Auvray, T. & Matson, E. M. Polyoxometalate-based complexes as ligands for the study of actinide chemistry. Dalton Trans. 49, 13917–13927 (2020).

    Article  CAS  Google Scholar 

  27. Dufaye, M., Duval, S. & Loiseau, T. Trends and new directions in the crystal chemistry of actinide oxo-clusters incorporated in polyoxometalates. CrystEngComm 22, 3549–3562 (2020).

    Article  CAS  Google Scholar 

  28. Antonio, M. R., Williams, C. W. & Soderholm, L. Synthesis and characterization of actinide-exchanged Preyssler heteropolyanions [AnP5W30O110]n (An≡Th, Am, Cm). J. Alloys Compd. 271–273, 846–849 (1998).

    Article  Google Scholar 

  29. Chiang, M.-H., Soderholm, L. & Antonio, M. R. Redox chemistry of actinide ions in Wells−Dawson heteropolyoxoanion complexes. Eur. J. Inorg. Chem. 2003, 2929–2936 (2003).

    Article  Google Scholar 

  30. Ioussov, A. & Krupa, J. C. Luminescence properties and stability constants of curium(III) complexes with lacunary heteropolyanions PW11O397– and SiW11O398– in nitric acid solutions. Radiochim. Acta 78, 97–104 (1997).

    Article  CAS  Google Scholar 

  31. Blazevic, A. & Rompel, A. The Anderson–Evans polyoxometalate: from inorganic building blocks via hybrid organic–inorganic structures to tomorrows ‘Bio-POM’. Coord. Chem. Rev. 307, 42–64 (2016).

    Article  CAS  Google Scholar 

  32. Colliard, I., Morrison, G., zur Loye, H.-C. & Nyman, M. Supramolecular assembly of U(IV) clusters and superatoms with unconventional countercations. J. Am. Chem. Soc. 142, 9039–9047 (2020).

    Article  CAS  Google Scholar 

  33. Gumerova, N. I. & Rompel, A. Polyoxometalates in solution: speciation under spotlight. Chem. Soc. Rev. 49, 7568–7601 (2020).

    Article  CAS  Google Scholar 

  34. Colliard, I. et al. Snapshots of Ce70 toroid assembly from solids and solution. J. Am. Chem. Soc. 143, 9612–9621 (2021).

    Article  CAS  Google Scholar 

  35. Peacock, R. D. & Weakley, T. J. R. Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. J. Chem. Soc. A 1836–1839 (1971).

  36. Griffith, W. P. et al. Studies on polyoxo- and polyperoxometalates: part 7. Lanthano- and thoriopolyoxotungstates as catalytic oxidants with H2O2 and the X-ray crystal structure of Na8[ThW10O36]·28H2O. J. Organomet. Chem. 607, 146–155 (2000).

    Article  CAS  Google Scholar 

  37. Law, G.-L. et al. Circularly polarized luminescence of curium: a new characterization of the 5f actinide complexes. J. Am. Chem. Soc. 134, 15545–15549 (2012).

    Article  CAS  Google Scholar 

  38. Sturzbecher-Hoehne, M., Kullgren, B., Jarvis, E. E., An, D. D. & Abergel, R. J. Highly luminescent and stable hydroxypyridinonate complexes: a step towards new curium decontamination strategies. Chem. Eur. J. 20, 9962–9968 (2014).

    Article  CAS  Google Scholar 

  39. Misra, A., Kozma, K., Streb, C. & Nyman, M. Beyond charge balance: counter‐cations in polyoxometalate chemsitry. Angew. Chem. Int. Ed. 59, 596–612 (2020).

    Article  CAS  Google Scholar 

  40. Grimes, T. S. et al. Influence of a heterocyclic nitrogen-donor group on the coordination of trivalent actinides and lanthanides by aminopolycarboxylate complexants. Inorg. Chem. 57, 1373–1385 (2018).

    Article  CAS  Google Scholar 

  41. Kimura, T., Nagaishi, R., Kato, Y. & Yoshida, Z. Luminescence study on solvation of americium(III), curium(III) and several lanthanide(III) ions in nonaqueous and binary mixed solvents. Radiochim. Acta 89, 125–130 (2001).

    Article  CAS  Google Scholar 

  42. Holliday, K. et al. Discriminating factors affecting incorporation: comparison of the fate of Eu3+–Cm3+ in the Sr carbonate–sulfate system. Dalton Trans. 41, 3642–3647 (2012).

    Article  CAS  Google Scholar 

  43. Holliday, K. S. et al. Site-selective time resolved laser fluorescence spectroscopy of Eu and Cm doped LaPO4. Radiochim. Acta 100, 189–195 (2012).

    Article  CAS  Google Scholar 

  44. Kimura, T., Choppin, G. R., Kato, Y. & Yoshida, Z. Determination of the hydration number of Cm(III) in various aqueous solutions. Radiochim. Acta 72, 61–64 (1996).

    Article  CAS  Google Scholar 

  45. Sousa, F. L. et al. Luminescent polyoxotungstoeuropate anion-pillared layered double hydroxides. Eur. J. Inorg. Chem. 2006, 726–734 (2006).

    Article  Google Scholar 

  46. Wang, Z. et al. Chemically responsive luminescent switching in transparent flexible self-supporting [EuW10O36]9−-agarose nanocomposite thin films. J. Mater. Chem. 20, 271–277 (2009).

    Article  CAS  Google Scholar 

  47. Caliman, E., Dias, J. A., Dias, S. C. L. & Prado, A. G. S. Solvent effect on the preparation of H3PW12O40 supported on alumina. Catal. Today 107–108, 816–825 (2005).

    Article  Google Scholar 

  48. Maksimovskaya, R. I. & Maksimov, G. M. Borotungstate polyoxometalates: multinuclear NMR structural characterization and conversions in solutions. Inorg. Chem. 50, 4725–4731 (2011).

    Article  CAS  Google Scholar 

  49. Yamase, T. & Ishikawa, E. Structural characterization of the brown six-electron-reduced form of dodecatungstoborate, K5[BW12O37(H2O)3]·13.5H2O. J. Chem. Soc., Dalton Trans. 1619–1627 (1996).

  50. Cary, S. K. et al. Emergence of californium as the second transitional element in the actinide series. Nat. Commun. 6, 6827 (2015).

    Article  CAS  Google Scholar 

  51. Jones, Z. R. et al. Advancing understanding of actinide(III) (Ac, Am, Cm) aqueous complexation chemistry. Chem. Sci. 12, 5638–5654 (2021).

    Article  CAS  Google Scholar 

  52. Polinski, M. J. et al. Differentiating between trivalent lanthanides and actinides. J. Am. Chem. Soc. 134, 10682–10692 (2012).

    Article  CAS  Google Scholar 

  53. Sykora, R. E., Assefa, Z., Haire, R. G. & Albrecht-Schmitt, T. E. Hydrothermal synthesis, structure, Raman spectroscopy, and self-irradiation studies of 248Cm(IO3)3. J. Solid State Chem. 177, 4413–4419 (2004).

    Article  CAS  Google Scholar 

  54. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  55. Burns, J. H. & Baybarz, R. D. Crystal structure of americium sulfate octahydrate. Inorg. Chem. 11, 2233–2237 (1972).

    Article  CAS  Google Scholar 

  56. Cross, J. N. et al. Syntheses, structures, and spectroscopic properties of plutonium and americium phosphites and the redetermination of the ionic radii of Pu(III) and Am(III). Inorg. Chem. 51, 8419–8424 (2012).

    Article  CAS  Google Scholar 

  57. Contant, R., Klemperer, W. G. & Yaghi, O. in Inorganic Syntheses Vol. 27 (ed. Ginsberg, A. P.) 104–111 (Wiley, 1990).

  58. Tézé, A., Michelon, M. & Hervé, G. Syntheses and structures of the tungstoborate anions. Inorg. Chem. 36, 505–509 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy (DOE) by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported by the LDRD Program under the LLNL project 20-LW-017. Release number: LLNL-JRNL-829648. I.C. and M.N. acknowledge the US DOE, National Nuclear Security Administration (NNSA) for work conducted at Oregon State University, award number DE-NA0003763. I.C. acknowledges the US DOE’s SCGSR fellowship.

Author information

Authors and Affiliations

Authors

Contributions

G.J.-P.D. supervised the project. I.C. and G.J.-P.D. conducted the synthetic and spectroscopic experiments. I.C., J.R.I.L., M.N. and G.J.-P.D. conducted the crystallography experiments and analysed the crystallographic data. C.A.C., H.E.M. and A.M.S. conducted the NMR experiments. G.J.-P.D. wrote the original draft of the manuscript. G.J.-P.D., M.N. and M.Z. acquired funding. All authors made intellectual contributions to the project, and also reviewed and edited the manuscript.

Corresponding author

Correspondence to Gauthier J.-P. Deblonde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Kristina Kvashnina, Annette Rompel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Tables 1–13.

Supplementary Data 1

SCXRD structure of CsCmBW11.

Supplementary Data 2

SCXRD structure of CsCmPW11-α.

Supplementary Data 3

SCXRD structure of CsCmPW11-β.

Supplementary Data 4

SCXRD structure of CsEuBW11.

Supplementary Data 5

SCXRD structure of EuPW11.

Supplementary Data 6

SCXRD structure of EuW5.

Supplementary Data 7

SCXRD structure of NdBW11.

Supplementary Data 8

SCXRD structure of NdPW11.

Supplementary Data 9

SCXRD structure of NdW5.

Supplementary Data 10

SCXRD structure of SmBW11.

Supplementary Data 11

SCXRD structure of SmPW11.

Supplementary Data 12

Data points shown in Supplementary Fig. 22b.

Source data

Source Data Fig. 1

Data points shown in Fig. 1a.

Source Data Fig. 2

Fluorescence emission and excitation data shown in Figs. 2a,c,d.

Source Data Fig. 3

UV-visible absorbance data shown in Fig. 3a–f.

Source Data Fig. 4

Fluorescence emission, excitation amd decay data shown in Fig. 4a–f.

Source Data Fig. 5

Fluorescence and Raman data shown in Fig. 4b–d.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colliard, I., Lee, J.R.I., Colla, C.A. et al. Polyoxometalates as ligands to synthesize, isolate and characterize compounds of rare isotopes on the microgram scale. Nat. Chem. 14, 1357–1366 (2022). https://doi.org/10.1038/s41557-022-01018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01018-8

  • Springer Nature Limited

This article is cited by

Navigation