Skip to main content
Log in

Shape-preserving transformation of carbonate minerals into lead halide perovskite semiconductors based on ion exchange/insertion reactions

  • Article
  • Published:

From Nature Chemistry

View current issue Submit your manuscript


Biological and bio-inspired mineralization processes yield a variety of three-dimensional structures with relevance for fields such as photonics, electronics and photovoltaics. However, these processes are only compatible with specific material compositions, often carbonate salts, thereby hampering widespread applications. Here we present a strategy to convert a wide range of metal carbonate structures into lead halide perovskite semiconductors with tunable bandgaps, while preserving the 3D shape. First, we introduce lead ions by cation exchange. Second, we use carbonate as a leaving group, facilitating anion exchange with halide, which is followed rapidly by methylammonium insertion to form the perovskite. As proof of principle, pre-programmed carbonate salt shapes such as vases, coral-like forms and helices are transformed into perovskites while preserving the morphology and crystallinity of the initial micro-architectures. This approach also readily converts calcium carbonate biominerals into semiconductors, furnishing biological and programmable synthetic shapes with the performance of artificial compositions such as perovskite-based semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Reaction scheme for the synthesis of CH3NH3PbX3 perovskites from carbonate salts (MCO3).
Fig. 2: Conversion of metal carbonate microstructures into CH3NH3PbX3 perovskites.
Fig. 3: Photoluminescence of perovskite microstructures.
Fig. 4: Complex arbitrarily shaped perovskites from synthetic and biological mineral architectures.

Similar content being viewed by others


  1. Fratzl, P. Biomimetic materials research: what can we really learn from nature’s structural materials. J. R. Soc. Interface 4, 637–642 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nudelman, F. & Sommerdijk, N. A. J. M. Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. 21, 6582–6596 (2012).

    Article  CAS  Google Scholar 

  3. Studart, A. R. Towards high-performance bioinspired composites. Adv. Mater. 24, 5024–5044 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Di Giosia, M. et al. Bioinspired nanocomposites: ordered 2D materials within a 3D lattice. Adv. Funct. Mater. 26, 5569–5575 (2016).

    Article  CAS  Google Scholar 

  6. Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotech. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  8. Bao, Z. et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446, 172–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Kaplan, C. N. et al. Controlled growth and form of precipitating microstructures. Science 355, 1395–1399 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Lowenstam, H. A. & Weiner, S. On Biomineralization (Oxford Univ. Press, Oxford, 1989).

  11. Mann, S. Biomineralization (Oxford Univ. Press: Oxford, 2002).

    Google Scholar 

  12. Mann, S. & Ozin, G. A. Synthesis of inorganic materials with complex form. Nature 382, 313–318 (1996).

    Article  CAS  Google Scholar 

  13. García-Ruiz, J. M., Melero-García, E. & Hyde, S. T. Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323, 362–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Noorduin, W. L., Grinthal, A., Mahadevan, L. & Aizenberg, J. Rationally designed complex, hierarchical microarchitectures. Science 340, 832–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Sandhage, K. H. et al. Novel, bioclastic route to self-assembled 3D, chemically tailored meso/nanostructures: shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14, 429–433 (2002).

    Article  CAS  Google Scholar 

  16. Weatherspoon, M. R., Allan, S. M., Hunt, E., Cai, Y. & Sandhage, K. H. Sol–gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature’s nanostructured templates. Chem. Commun. 2005, 651–653 (2005).

    Article  CAS  Google Scholar 

  17. Wu, H. et al. Electrospun metal nanofiber webs as high-performance transparent electrodes. Nano Lett. 10, 4242–4248 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Robinson, R. D. et al. Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Beberwyck, B. J., Surendranath, Y. & Alivisatos, A. P. Cation exchange: a versatile tool for nanomaterials synthesis. J. Phys. Chem. C 117, 19759–19770 (2013).

    Article  CAS  Google Scholar 

  21. Putnis, A. Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral. Mag. 66, 689–708 (2002).

    Article  CAS  Google Scholar 

  22. De Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hodges, J. H., Kletetschka, K., Fenton, J. L., Read, C. G. & Schaak, R. E. Sequential anion and cation exchange reactions for complete material transformations of nanoparticles with morphological retention. Angew. Chem. Int. Ed. 54, 8669–8672 (2015).

    Article  CAS  Google Scholar 

  24. Wu, H.-L. et al. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions. Science 351, 1306–1310 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Stebe, K. J., Lewandowski, E. & Ghosh, M. Oriented assembly of metamaterials. Science 325, 159–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Boneschanscher, M. P. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Geuchies, J. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 15, 1248–1254 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048–16056 (2016).

    Article  CAS  Google Scholar 

  30. Polman, A. & Atwater, H. A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11, 174–177 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, K. & Tüysüz, H. Morphology-controlled synthesis of organometal halide perovskite inverse opals. Angew. Chem. Int. Ed. 54, 13806–13810 (2015).

    Article  CAS  Google Scholar 

  32. Ashley, M. J. et al. Templated synthesis of uniform perovskite nanowire arrays. J. Am. Chem. Soc. 138, 10096–10099 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Sheng, R. et al. Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C 119, 3545–3549 (2015).

    Article  CAS  Google Scholar 

  35. Yuan, K., Lee, S. S., De Andrade, V., Sturchio, N. C. & Fenter, P. Replacement of calcite (CaCO3) by cerussite (PbCO3). Environ. Sci. Technol. 50, 12984–12991 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Solubility Product Constants (North Carolina State University, accessed 1 May 2017);

  37. Niu, G., Li, W., Meng, F., Wang, L., Dong, H. & Qui, Y. Study on stability of CH3NH3PbI3 films and effect of post modification by aluminum oxide in all-solid-state hybrid solar cell. J. Mater. Chem. A 2, 705–711 (2014).

    Article  CAS  Google Scholar 

  38. Tenuta, E., Zheng, C. & Rubel, O. Thermodynamic origin of instability in hybrid halide perovskites. Sci. Rep. 6, 37654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eperon, G. E. et al. The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano 9, 9380–9393 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Li, L., Fijneman, A. J., Kaandorp, J. A., Aizenberg, J. & Noorduin, W. L. Directed nucleation and growth by balancing local supersaturation and substrate/nucleus lattice mismatch. Proc. Natl Acad. Sci. USA 115, 3575–3580 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references


The authors thank T. Coenen for assistance with the cathodoluminescence measurements, S. Brittman for technical help and discussions, L.M.C. Janssen for help with the manuscript and J.C. Weaver for identification of the biominerals. W.L.N. thanks the Netherlands Organization for Scientific Research (NWO) for financial support from a VENI grant. E.C.G. was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC grant agreement no. 337328, ‘NanoEnabledPV’ and by an STW VIDI grant. S.M. acknowledges funding from the European Research Council (grant agreement no. 695343). Scanning electron microscopy was performed at the fabrication and characterization facilities of the Amsterdam nanoCenter, supported by NWO.

Author information

Authors and Affiliations



T.H., L.H. and H.C.H. contributed equally to this work. E.C.G. and W.L.N. conceived the initial idea. T.H., L.H. and H.C.H. designed, performed and analysed the experiments. I.B. designed and performed the methylamine detection. S.M. performed the cathodoluminescence analysis, and G.W.P.A. performed the photoluminescence lifetime measurements. W.L.N. wrote the manuscript, with input of all the other authors.

Corresponding author

Correspondence to Willem L. Noorduin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary synthesis and characterization details

Supplementary Movie 1

Real-time movie of the conversion of a 3.5 cm sized sand dollar into CH3NH3PbBr3 by dripping a CH3NH3Br solution on the PbCO3 converted sand dollar surface under 365-nm UV illumination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holtus, T., Helmbrecht, L., Hendrikse, H.C. et al. Shape-preserving transformation of carbonate minerals into lead halide perovskite semiconductors based on ion exchange/insertion reactions. Nature Chem 10, 740–745 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

  • Springer Nature Limited

This article is cited by