Skip to main content
Log in

GENOME EDITING

Base editing goes into hyperdrive

  • News & Views
  • Published:

From Nature Cell Biology

View current issue Submit your manuscript

CRISPR base editors can induce single-base-pair changes in the genome, although they are often inefficient. A study now shows that fusion of the DNA-binding domain of RAD51 to base editors enhances both the efficiency and the targeting range of optimized enzymes. These ‘hyper-editors’ offer effective tools for disease modeling and gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Enhanced efficiency and expanded editing range of hyper-base-editing enzymes engineered to include a non-specific ssDNA-binding domain of the human RAD51 protein.

References

  1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gaudelli, N. M. et al. Nature 551, 464–471 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rees, H. A. & Liu, D. R. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schatoff, E. M., Paz Zafra, M. & Dow, L. E. Methods 164–165, 100–108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang, X. et al. Nat. Cell Biol. https://doi.org/10.1038/s41556-020-0518-8 (2020).

  6. Koblan, L. W. et al. Nat. Biotechnol. 36, 843–846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, X. et al. Nat. Biotechnol. 36, 946–949 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Kim, Y. B. et al. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gehrke, J. M. et al. Nat. Biotechnol. 36, 977–982 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zafra, M. P. et al. Nat. Biotechnol. 36, 888–893 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, W. et al. Cell Res. 28, 855–861 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hess, G. T. et al. Nat. Methods 13, 1036–1042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martyn, G. E. et al. Nat. Genet. 50, 498–503 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Dedoussis, G. V., Sinopoulou, K., Gyparaki, M. & Loutradis, A. Eur. J. Haematol. 65, 93–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Wienert, B., Martyn, G. E., Funnell, A. P. W., Quinlan, K. G. R. & Crossley, M. Trends Genet. 34, 927–940 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas E. Dow.

Ethics declarations

Competing interests

L.E.D. is an inventor on a patent that describes base-editing enzymes with increased efficiency and editing range: patent application PCT/US2019/040358 (filed 2 July 2019), international publication number WO2020/033083 (publication date 13 February 2020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katti, A., Dow, L.E. Base editing goes into hyperdrive. Nat Cell Biol 22, 617–618 (2020). https://doi.org/10.1038/s41556-020-0521-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-020-0521-0

  • Springer Nature Limited

Navigation