Skip to main content

Advertisement

Log in

Towards superior dendritic-cell vaccines for cancer therapy

  • Comment
  • Published:

From Nature Biomedical Engineering

View current issue Submit your manuscript

Potent dendritic-cell cancer vaccines could be used to induce functional antitumour immunity without off-target toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Classical and newly discovered DC subsets.
Fig. 2: Expression of selected immune checkpoint factors on in vitro stimulated CD141+ DCs, MoDCs and pDCs.

References

  1. Rezvani, K., Rouce, R., Liu, E. & Shpall, E. Mol. Therapy 25, 1769–1781 (2017).

    Article  CAS  Google Scholar 

  2. D’Aloia, M. M., Zizzari, I. G., Sacchetti, B., Pierelli, L. & Alimandi, M. Cell Death Dis. 9, 282 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cheever, M. A. & Higano, C. S. Clin. Cancer Res. 17, 3520–3526 (2011).

    Article  PubMed  Google Scholar 

  4. Leaf, R. K. et al. J. Immunotherapy 40, 315–322 (2017).

    Article  CAS  Google Scholar 

  5. Doebel, T., Voisin, B. & Nagao, K. Trends Immunol. 38, 817–828 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Villani, A. C. et al. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Alcantara-Hernandez, M. et al. Immunity 47, 1037–1050.e6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palucka, K. & Banchereau, J. Immunity 39, 38–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenblatt, J. et al. Sci. Transl. Med. 8, 368ra171 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Van Tendeloo, V. F. et al. Proc. Natl Acad. Sci. USA 107, 13824–13829 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schreibelt, G. et al. Clin. Cancer Res. 22, 2155–2166 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Saxena, M. & Bhardwaj, N. Trends Cancer 4, 119–137 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garg, A. D. et al. Oncoimmunology 6, e1328341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Anguille, S., Smits, E. L., Lion, E., van Tendeloo, V. F. & Berneman, Z. N. The Lancet Oncology 15, e257–e267 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Saxena, M. & Bhardwaj, N. Curr. Opin. Immunol. 47, 35–43 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Van Lint, S. et al. Cancer Immunol. Res. 4, 146–156 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. Van der Jeught, K. et al. Oncotarget 6, 1359–1381 (2015).

    Article  PubMed  Google Scholar 

  18. Hutten, T. J. et al. J. Immunol. 197, 2715–2725 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Goyvaerts, C. et al. Oncotarget 5, 704–715 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Manches, O. et al. Haematologica 90, 625–634 (2005).

    CAS  PubMed  Google Scholar 

  21. Kranz, L. M. et al. Nature 534, 396–401 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. De Vries, J. & Figdor, C. I. Nature 534, 329–331 (2016).

    Article  PubMed  CAS  Google Scholar 

  23. Hartung, E. et al. J. Immunol. 194, 1069–1079 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Cauwels, A. et al. Cancer Res. 78, 463–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. De Munck, J., Binks, A., McNeish, I. A. & Aerts, J. L. J. Leukocyte Biol. 102, 631–643 (2017).

    Article  PubMed  Google Scholar 

  26. Harrington, K. J. et al. Expert Rev. Anticancer Therapy 15, 1389–1403 (2015).

    Article  CAS  Google Scholar 

  27. van den Bijgaart, R. J. et al. Cancer Immunol. Immunotherapy 66, 247–258 (2017).

    Article  Google Scholar 

  28. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sabado, R. L., Balan, S. & Bhardwaj, N. Cell Res. 27, 74–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Prue, R. L. et al. J. Immunotherapy 38, 71–76 (2015).

    Article  CAS  Google Scholar 

  31. Tel, J. et al. Cancer Res. 73, 1063–1075 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Balan, S., Finnigan, J. & Bhardwaj, N. Cancer J. 23, 131–137 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carreno, B. M. et al. Science 348, 803–808 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiang, C. L. et al. Clin. Cancer Res. 19, 4801–4815 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Lint, S. et al. Cancer Immunol. Immunotherapy 63, 959–967 (2014).

    Article  CAS  Google Scholar 

  36. Sundarasetty, B. S. et al. Gene Therapy 22, 707–720 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Squadrito, M. L., Cianciaruso, C., Hansen, S. K. & De Palma, M. Nat. Methods 15, 183–186 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Balan, S. & Dalod, M. Methods Mol. Biol. 1423, 19–37 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Yewdall, A. W., Drutman, S. B., Jinwala, F., Bahjat, K. S. & Bhardwaj, N. PLoS ONE 5, e11144 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Avigan, D. E. et al. J. Immunotherapy 30, 749–761 (2007).

    Article  Google Scholar 

  41. Balan, S. et al. J. Immunol. 193, 1622–1635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, J., Lau, K. Y., Jung, J., Ravindran, P. & Barrat, F. J. Eur. J. Immunol. 44, 1130–1136 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Eisenberg, E. & Levanon, E. Y. Trends Genet. 29, 569–574 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Sawasdikosol, S., Zha, R., Yang, B. & Burakoff, S. Immunologic Res. 54, 262–265 (2012).

    Article  CAS  Google Scholar 

  45. Hobo, W. et al. Blood 116, 4501–4511 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Pen, J. J. et al. Gene Therapy 21, 262–271 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Wilgenhof, S. et al. J. Clin. Oncol. 34, 1330–1338 (2016).

    Article  PubMed  Google Scholar 

  48. Wilgenhof, S. et al. Cancer Immunol. Immunotherapy 64, 381–388 (2015).

    Article  CAS  Google Scholar 

  49. Wilgenhof, S. et al. Ann. Oncol. 24, 2686–2693 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Daenthanasanmak, A. et al. Mol. Therapy Methods Clin. Dev. 1, 14060 (2015).

    Article  CAS  Google Scholar 

  51. Kreiter, S. et al. Cancer Res. 70, 9031–9040 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Kheshtchin, N. et al. Cancer Immunol. Immunotherapy 65, 1159–1167 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health grants RO1CA201189, R01CA180913 and R01AI081848, the Cancer Research Institute and the Melanoma Research Alliance. N.B. is a member of the Parker Institute for Cancer Immunotherapy, which supports the Icahn School of Medicine at Mount Sinai, NY, Cancer Immunotherapy Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Bhardwaj.

Ethics declarations

Competing interests

N.B. is on the senior advisory board of Check Point Sciences, Curevac, Neon and Inception, and a consultant for Genentech. All potential conflicts of interest are being managed by the Conflict of Interest Office, Icahn School of Medicine at Mount Sinai. M.S., S.B. and V.R. declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, M., Balan, S., Roudko, V. et al. Towards superior dendritic-cell vaccines for cancer therapy. Nat Biomed Eng 2, 341–346 (2018). https://doi.org/10.1038/s41551-018-0250-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-018-0250-x

  • Springer Nature Limited

This article is cited by

Navigation