Skip to main content
Log in

Finding high-redshift gamma-ray bursts in tandem near-infrared and optical surveys

  • Comment
  • Published:

From Nature Astronomy

View current issue Submit your manuscript

Gamma-ray bursts are linked to the most distant objects in the Universe, but detecting them is a rare event. With a dedicated near-infrared telescope to observe in tandem with the optical Vera Rubin Observatory, ten or so high-redshift (z ≳ 6) gamma-ray bursts could potentially be detected every year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Rates of high-redshift GRBs depending on the nIR limiting magnitude and redshift.
Fig. 2: Prompt emission isotropic equivalent energy versus redshift of the simulated population of events with H <21.

References

  1. Salvaterra, R. et al. Nature 461, 1258–1260 (2009).

    Article  ADS  Google Scholar 

  2. Tanvir, N. R. et al. Nature 461, 1254–1257 (2009).

    Article  ADS  Google Scholar 

  3. Jiang, L. et al. Nat. Astron. 5, 256–261 (2021).

    Article  ADS  Google Scholar 

  4. Castellano, M. et al. Preprint at https://arxiv.org/abs/2207.09436 (2022).

  5. Melandri, A. et al. Astron. Astrophys. 581, A86 (2015).

    Article  Google Scholar 

  6. Ivezić, Ž. et al. Astrophys. J. 873, 111 (2019).

    Article  ADS  Google Scholar 

  7. Ghirlanda, G. et al. Mon. Not. R. Astron. Soc. 448, 2514–2524 (2015).

    Article  ADS  Google Scholar 

  8. Salvaterra, R. et al. Astrophys. J. 749, 68 (2012).

    Article  ADS  Google Scholar 

  9. Yoon, S.-C., Langer, N. & Norman, C. Astron. Astrophys. 460, 199–208 (2006).

    Article  ADS  Google Scholar 

  10. Ryan, G., van Eerten, H., Piro, L. & Troja, E. Astrophys. J. 896, 166 (2020).

    Article  ADS  Google Scholar 

  11. Gehrels, N. et al. Astrophys. J. 689, 1161–1172 (2008).

    Article  ADS  Google Scholar 

  12. Amati, L. et al. Exper. Astron. 52, 183–218 (2021).

    Article  ADS  Google Scholar 

  13. White, N. E. et al. Proc. SPIE 11821, 1182109 (2021).

    Google Scholar 

  14. Cucchiara, N. et al. Astrophys. J. 736, 7 (2011).

    Article  ADS  Google Scholar 

  15. Tanvir, N. R. et al. Astrophys. J. 865, 107 (2018).

    Article  ADS  Google Scholar 

  16. Marshall, P. et al. Preprint at https://arxiv.org/abs/1708.04058 (2017).

  17. Uslenghi, M., Falomo, R. & Fantinel, D. Proc. SPIE 9911, 99112U (2016).

    Article  ADS  Google Scholar 

  18. Sutherland, W. et al. Astron. Astrophys. 575, A25 (2015).

    Article  Google Scholar 

  19. Ghirlanda, G. et al. Astron. Astrophys. 609, A112 (2018).

    Article  Google Scholar 

  20. Covino, S. et al. Mon. Not. R. Astron. Soc. 432, 1231–1244 (2013).

    Article  ADS  Google Scholar 

  21. Salvaterra, R. J. High Energy Astrophys. 7, 35–43 (2015).

    Article  ADS  Google Scholar 

  22. Zafar, T. et al. Astron. Astrophys. 532, A143 (2011).

    Article  Google Scholar 

  23. Audard, M. et al. in Protostars and Planets VI (Beuther, H. et al. eds) 387–410 (Univ. Arizona Press, 2014).

  24. Schmidt, S. J. et al. Astrophys. J. 876, 115 (2019).

    Article  ADS  Google Scholar 

  25. Kanodia, S. et al. Astrophys. J. 925, 155 (2022).

    Article  ADS  Google Scholar 

  26. Jakobsson, P. et al. Astrophys. J. 617, L21–L24 (2004).

    Article  ADS  Google Scholar 

  27. van der Horst, A. J. et al. Astrophys. J. 699, 1087–1091 (2009).

    Article  ADS  Google Scholar 

  28. Campana, S. et al. Mon. Not. R. Astron. Soc. 421, 1697–1702 (2012).

    Article  ADS  Google Scholar 

  29. Melandri, A. et al. Mon. Not. R. Astron. Soc. 421, 1265–1272 (2012).

    Article  ADS  Google Scholar 

  30. Greiner, J. et al. Astron. Astrophys. 526, A30 (2011).

    Article  Google Scholar 

  31. Chrimes, A. A., Levan, A. J., Groot, P. J., Lyman, J. D. & Nelemans, G. Mon. Not. R. Astron. Soc. 508, 1929–1946 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S. C. thanks M. G. Bernardini, P. D’Avanzo, A. Melandri, P. Schipani, G. Tagliaferri and F. Vitali for useful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Campana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campana, S., Ghirlanda, G., Salvaterra, R. et al. Finding high-redshift gamma-ray bursts in tandem near-infrared and optical surveys. Nat Astron 6, 1101–1104 (2022). https://doi.org/10.1038/s41550-022-01804-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01804-x

  • Springer Nature Limited

Navigation