Skip to main content
Log in

The revolution evolution

  • Comment
  • Published:

From Nature Plants

View current issue Submit your manuscript

Machine-learning algorithms for protein structure prediction can now generate models directly from sequences. However, photosynthetic assemblies represent a challenge due to additional levels of complexity arising from their multi-protein nature and presence of cofactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Evolutionary progress in structural biology of photosynthetic proteins.
Fig. 2: The structure of the PSI dimer features 614 non-protein cofactors.
Fig. 3: Structural details of cofactors in photosynthetic complexes.

References

  1. Jumper, J. et al. Nature 596, 583–589 (2021).

    Article  CAS  Google Scholar 

  2. Baek, M. et al. Science 373, 871–876 (2021).

    Article  CAS  Google Scholar 

  3. Kühlbrandt, W. Science 343, 1443–1444 (2014).

    Article  Google Scholar 

  4. McMullan, G., Faruqi, A. R. & Henderson, R. Methods Enzymol. 579, 1–17 (2016).

    Article  CAS  Google Scholar 

  5. Pan, X. et al. Science 360, 1109–1113 (2018).

    Article  CAS  Google Scholar 

  6. Iwai, M., Grob, P., Iavarone, A. T., Nogales, E. & Niyogi, K. K. Nat. Plants 4, 904–909 (2018).

    Article  CAS  Google Scholar 

  7. Caspy, I., Borovikova-Sheinker, A., Klaiman, D., Shkolnisky, Y. & Nelson, N. Nat. Plants 6, 1300–1305 (2020).

    Article  CAS  Google Scholar 

  8. Perez-Boerema, A. et al. Nat. Plants 6, 321–327 (2020).

    Article  CAS  Google Scholar 

  9. Naschberger, A. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.08.30.458224 (2021).

  10. Qin, X. et al. Nat. Plants 5, 263–272 (2019).

    Article  Google Scholar 

  11. Suga, M. et al. Nat. Plants 5, 626–636 (2019).

    Article  Google Scholar 

  12. Su, X. et al. Nat. Plants 5, 273–281 (2019).

    Article  CAS  Google Scholar 

  13. Yan, Q. et al. Cell Discov. 7, 10 (2021).

    Article  CAS  Google Scholar 

  14. Gorski et al. Preprint at bioRxiv https://doi.org/10.1101/2021.11.26.470156 (2021).

  15. Chen, M. et al. Nat. Plants 6, 314–320 (2020).

    Article  CAS  Google Scholar 

  16. Zheng, L. et al. Nat. Plants 5, 1087–1097 (2019).

    Article  CAS  Google Scholar 

  17. Kato, K. et al. Nat. Commun. 10, 4929 (2019).

    Article  Google Scholar 

  18. Huang, Z. et al. Nat. Commun. 12, 1100 (2021).

    Article  CAS  Google Scholar 

  19. Pan, X. et al. Nat. Plants 7, 1119–1131 (2021).

    Article  CAS  Google Scholar 

  20. Xu, C. et al. Nat. Commun. 11, 5081 (2020).

    Article  CAS  Google Scholar 

  21. Amunts, A. et al. Science 343, 1485–1489 (2014).

    Article  CAS  Google Scholar 

  22. Lawson, C. L., Berman, H. M. & Chiu, W. Struct. Dyn. 7, 014701 (2020).

    Article  CAS  Google Scholar 

  23. Graça, A. T., Hall, M., Persson, K. & Schröder, W. P. Sci. Rep. 11, 15534 (2021).

    Article  Google Scholar 

  24. Waltz, F., Soufari, H., Bochler, A., Giegé, P. & Hashem, Y. Nat. Plants 6, 377–383 (2020).

    Article  Google Scholar 

  25. Yuzuru, I. J. et al. Science 371, 846–849 (2021).

    Article  Google Scholar 

  26. Grade Web Server (Global Phasing Ltd, 2021); http://grade.globalphasing.org

  27. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  28. Caspy, I. et al. Nat. Plants 7, 1314–1322 (2021).

    Article  CAS  Google Scholar 

  29. Yong, T., Báti, G., García, F. & Stuparu, M. C. Nat. Commun. 12, 5187 (2021).

    Article  CAS  Google Scholar 

  30. Pagliano, C., Barera, S., Chimirri, F., Saracco, G. & Barber, J. Bioenergetics 1817, 1506–1515 (2012).

    Article  CAS  Google Scholar 

  31. Minoda, A. et al. Eur. J. Biochem. 269, 2353–2358 (2002).

    Article  CAS  Google Scholar 

  32. Aoki, M., Sato, N., Meguro, A. & Tsuzuki, M. Eur. J. Biochem. 271, 685–693 (2004).

    Article  CAS  Google Scholar 

  33. Qian, P. et al. Biochem. J. 478, 3923–3937 (2021).

    Article  CAS  Google Scholar 

  34. Croll, T. Twitter (5 September 2021); https://twitter.com/sjwill99/status/1434662442118778883

  35. Hooke, R. Micrographia or Some Physiological Descriptions made by Magnifying Glasses with Observations and Inquiries Thereupon (Royal Society, 1665).

  36. Schleiden, M. J. Arch. Anat. Physiol. Wiss. Med. 1838, 137–176 (1839).

    Google Scholar 

  37. Schwann, T. Mikroskopische Untersuchungen über die Uebereinstimmung: Struktur und dem Wachsthum der Thiere und Pflanzen (Sander, 1839).

  38. Feynman, R. Lecture on Quantum Electrodynamics at the University of Auckland, New Zealand. http://www.vega.org.uk/video/programme/45 (1979).

Download references

Acknowledgements

The author thanks A. Naschberger and N. Nelson for help with figures and comments, EMBO Young Investigator Program and Swedish Foundation for Strategic Research grant ARC19:0051 for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Amunts.

Ethics declarations

Competing interests

The author declares no competing interests

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amunts, A. The revolution evolution. Nat. Plants 8, 14–17 (2022). https://doi.org/10.1038/s41477-021-01050-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-01050-5

  • Springer Nature Limited

This article is cited by

Navigation