Skip to main content
Log in

Molecular picture of fluoropolymer adsorption on nanocarbon materials

  • Rapid Communication
  • Published:
Polymer Journal Submit manuscript

Abstract

Composites of fluoropolymers (FKMs) and nanocarbon fillers have been considered as sealing materials for hydrogen fuel storage. Here, we structurally and dynamically characterize FKM chains adsorbed onto single-walled carbon nanotubes (SWCNTs) and carbon black (CB), as prepared by a solvent leaching method. The glass transition temperatures for FKMs adsorbed onto SWCNTs and CB were found to be higher than the bulk value, and their extent was more remarkable for SWCNTs. The discrepancy in FKM mobility between the two fillers was explained in terms of the manner of chain adsorption via the atomic-scale surface roughness, rather than the surface chemistry, of the fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Fujiwara H, Ono H, Onoue K, Nishimura S. High-pressure gaseous hydrogen permeation test method -property of polymeric materials for high-pressure hydrogen devices (1). Int J Hydrog Energy. 2020;45:29082–94.

    Article  CAS  Google Scholar 

  2. Gao W, Guo JH, Xiong JB, Smith AT, Sun LY. Improving thermal, electrical and mechanical properties of fluoroelastomer/amino-functionalized multi-walled carbon nanotube composites by constructing dual crosslinking networks. Compos Sci Technol. 2018;162:49–57.

    Article  CAS  Google Scholar 

  3. Bansal A, Yang HC, Li CZ, Cho KW, Benicewicz BC, Kumar SK, et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater. 2005;4:693–8.

    Article  CAS  Google Scholar 

  4. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. The effect of interfacial dynamics on the bulk mechanical properties of rubber composites. Polym J. 2020;52:217–23.

    Article  CAS  Google Scholar 

  5. Stickney PB, Falb RD. Carbon black-rubber interactions and bound rubber. Rubber Chem Technol. 1964;37:1299–340.

    Article  Google Scholar 

  6. Zuo B, Inutsuka M, Kawaguch D, Wang XP, Tanaka K. Conformational relaxation of poly(styrene-co-butadiene) chains at substrate interface in spin-coated and solvent-cast films. Macromolecules. 2018;51:2180–6.

    Article  CAS  Google Scholar 

  7. Nguyen HK, Sugimoto S, Konomi A, Inutsuka M, Kawaguchi D, Tanaka K. Dynamics gradient of polymer chains near a solid interface. ACS Macro Lett. 2019;8:1006–11.

    Article  CAS  Google Scholar 

  8. Fujii Y, Yang ZH, Leach J, Atarashi H, Tanaka K, Tsui OKC. Affinity of polystyrene films to hydrogen-passivated silicon and its relevance to the Tg of the films. Macromolecules. 2009;42:7418–22.

    Article  CAS  Google Scholar 

  9. Napolitano S, Wubbenhorst M. The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun. 2011;2:260.

    Article  Google Scholar 

  10. Jiang NS, Shang J, Di XY, Endoh MK, Koga T. Formation mechanism of high-density, flattened polymer nanolayers adsorbed on planar solids. Macromolecules. 2014;47:2682–9.

    Article  CAS  Google Scholar 

  11. Zuo B, Zhou H, Davis MJB, Wang X, Priestley RD. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility. Phys Rev Lett. 2019;122:217801.

    Article  CAS  Google Scholar 

  12. Oda Y, Kawaguchi D, Morimitsu Y, Yamamoto S, Tanaka K. Direct observation of morphological transition for an adsorbed single polymer chain. Sci Rep. 2020;10:20914.

    Article  CAS  Google Scholar 

  13. Thees MF, Mcguire JA, Roth CB. Review and reproducibility of forming adsorbed layers from solvent washing of melt annealed films. Soft Matter. 2020;16:5366–87.

    Article  CAS  Google Scholar 

  14. Aoki M, Shundo A, Okamoto K, Ganbe T, Tanaka K. Segregation of an amine component in a model epoxy resin at a copper interface. Polym J 2019;51:359–63.

    Article  CAS  Google Scholar 

  15. Zhang C, Fujii Y, Tanaka K. Effect of long range interactions on the glass transition temperature of thin polystyrene films. ACS Macro Lett. 2012;1:1317–20.

    Article  CAS  Google Scholar 

  16. Zeng YH, Do DD, Horikawa T, Nicholson D, Nakai K. On the explanation of hysteresis in the adsorption of ammonia on graphitized thermal carbon black. Phys Chem Chem Phys. 2016;18:1163–71.

    Article  CAS  Google Scholar 

  17. Ferraro G, Fratini E, Rausa R, Fiaschi P, Baglioni P. Multiscale characterization of some commercial carbon blacks and diesel engine soot. Energy Fuels. 2016;30:9859–66.

    Article  CAS  Google Scholar 

  18. Douglas JF. How does surface roughness affect polymer-surface interactions? Macromolecules. 1989;22:3707–16.

    Article  CAS  Google Scholar 

  19. Panagopoulou A, Rodriguez-Tinoco C, White RP, Lipson JEG, Napolitano S. Substrate roughness speeds up segmental dynamics of thin polymer films. Phys Rev Lett. 2020;124:027802.

    Article  CAS  Google Scholar 

  20. Huang X, Thees MF, Size WB, Roth CB. Experimental study of substrate roughness on the local glass transition of polystyrene. J Chem Phys. 2020;152:244901.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the JST-Mirai Program (JPMJMI18A2) (K.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Kawaguchi or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, D., Sasahara, K., Saito, D. et al. Molecular picture of fluoropolymer adsorption on nanocarbon materials. Polym J 53, 1469–1473 (2021). https://doi.org/10.1038/s41428-021-00528-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00528-5

  • Springer Nature Limited

Navigation