Skip to main content
Log in

Gemcitabine-loaded synthetic high-density lipoprotein preferentially eradicates hepatic monocyte-derived macrophages in mouse liver with colorectal cancer metastases

  • Article
  • Published:
Acta Pharmacologica Sinica Submit manuscript

Abstract

Liver metastasis of colorectal cancer (CRC) is the critical cause of CRC-related death due to its unique immunosuppressive microenvironment. In this study we generated a gemcitabine-loaded synthetic high-density lipoprotein (G-sHDL) to reverse immunosuppression in livers with CRC metastases. After intravenous injection, sHDL targeted hepatic monocyte-derived alternatively activated macrophages (Mono-M2) in the livers of mice bearing both subcutaneous tumors and liver metastases. The G-sHDL preferentially eradicated Mono-M2 in the livers with CRC metastases, which consequently prevented Mono-M2-mediated killing of tumor antigen-specific CD8+ T cells in the livers and thus improved the densities of tumor antigen-specific CD8+ T cells in the blood, tumor-draining lymph nodes and subcutaneous tumors of the treated mice. While reversing the immunosuppressive microenvironment, G-sHDL also induced immunogenic cell death of cancer cells, promoted maturation of dendritic cells, and increased tumor infiltration and activity of CD8+ T cells. Collectively, G-sHDL inhibited the growth of both subcutaneous tumors and liver metastases, and prolonged the survival of animals, which could be further improved when used in conjunction with anti-PD-L1 antibody. This platform can be a generalizable platform to modulate immune microenvironment of diseased livers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic illustration of preparation and mechanism of G-sHDL.
Fig. 2: Liver metastases alter the hepatic immune microenvironment.
Fig. 3: Preferential uptake of sHDL by Mono-M2.
Fig. 4: G-sHDL reverses the immunosuppressive microenvironment in the livers and reduces the apoptosis of tumor antigen-specific CD8+ T cells.
Fig. 5: Antitumor immunity of the G-sHDL.
Fig. 6: Antitumor efficacy induced by sHDL.

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Li S, Yang H, Li W, Liu JY, Ren LW, Yang YH, et al. ADH1C inhibits progression of colorectal cancer through the ADH1C/PHGDH/PSAT1/serine metabolic pathway. Acta Pharmacol Sin. 2022;43:2709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mocellin S, Pilati P, Lise M, Nitti D. Meta-analysis of hepatic arterial infusion for unresectable liver metastases from colorectal cancer: the end of an era? J Clin Oncol. 2007;25:5649–54.

    Article  PubMed  Google Scholar 

  4. House MG, Ito H, Gonen M, Fong YM, Allen PJ, DeMatteo RP, et al. Survival after hepatic resection for metastatic colorectal cancer: trends in outcomes for 1600 patients during two decades at a single institution. J Am Coll Surg. 2010;210:744–52.

    Article  PubMed  Google Scholar 

  5. Hackl C, Neumann P, Gerken M, Loss M, Klinkhammer Schalke M, Schlitt HJ. Treatment of colorectal liver metastases in Germany: a ten-year population-based analysis of 5772 cases of primary colorectal adenocarcinoma. BMC Cancer. 2014;14:1–10.

    Article  Google Scholar 

  6. Adam R, Wicherts DA, de Haas RJ, Ciacio O, Levi F, Paule B, et al. Patients with initially unresectable colorectal liver metastases: is there a possibility of cure? J Clin Oncol. 2009;27:1829–35.

    Article  PubMed  Google Scholar 

  7. Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet. 2000;355:1041–7.

    Article  CAS  PubMed  Google Scholar 

  8. Sorbye H, Glimelius B, Berglund A, Fokstuen T, Tveit KM, Braendengen M, et al. Multicenter phase II study of nordic fluorouracil and folinic acid bolus schedule combined with oxaliplatin as first-line treatment of metastatic colorectal cancer. J Clin Oncol. 2004;22:31–8.

    Article  CAS  PubMed  Google Scholar 

  9. de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18:2938–47.

    Article  PubMed  Google Scholar 

  10. Andre T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med. 2020;383:2207–18.

    Article  CAS  PubMed  Google Scholar 

  11. Ciardiello D, Vitiello PP, Cardone C, Martini G, Troiani T, Martinelli E, et al. Immunotherapy of colorectal cancer: challenges for therapeutic efficacy. Cancer Treat Rev. 2019;76:22–32.

    Article  CAS  PubMed  Google Scholar 

  12. Zheng MJ, Tian ZG. Liver-mediated adaptive immune tolerance. Front Immunol. 2019;10:2525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daskivich TJ, Belldegrun A. Re: safety, activity, and immune correlates of anti-PD-1 antibody in cancer. Eur Urol. 2015;67:816–7.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021;21:541–57.

    Article  CAS  PubMed  Google Scholar 

  15. Ni QK, Xu FF, Wang YF, Li YJ, Qing GC, Zhang YX, et al. Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. J Control Release. 2022;342:210–27.

    Article  CAS  PubMed  Google Scholar 

  16. Ficht X, Lannacone M. Immune surveillance of the liver by T cells. Sci Immunol. 2020;5:eaba2351.

    Article  CAS  PubMed  Google Scholar 

  17. Pedroza Gonzalez A, Verhoef C, Ijzermans JNM, Peppelenbosch MP, Kwekkeboom J, Verheij J, et al. Activated tumor-infiltrating CD4+ regulatory T cells restrain antitumor immunity in patients with primary or metastatic liver cancer. Hepatology. 2013;57:183–94.

    Article  CAS  PubMed  Google Scholar 

  18. Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, et al. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 2021;27:152–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao C, Pang X, Yang Z, Wang S, Deng H, Chen X. Nanomaterials targeting tumor associated macrophages for cancer immunotherapy. J Control Release. 2022;341:272–84.

    Article  CAS  PubMed  Google Scholar 

  20. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23:1148–56.

    Article  CAS  PubMed  Google Scholar 

  21. Deng Y, Hu JC, He SH, Lou B, Ding TB, Yang JT, et al. Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacol Sin. 2021;42:149–59.

    Article  CAS  PubMed  Google Scholar 

  22. Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21:799–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xia YQ, Rao L, Yao HM, Wang ZL, Ning PB, Chen XY. Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 2020;32:e2002054.

    Article  PubMed  Google Scholar 

  24. Wang L, Zhao L, Gong FL, Sun C, Du DD, Yang XX, et al. Modified citrus pectin inhibits breast cancer development in mice by targeting tumor-associated macrophage survival and polarization in hypoxic microenvironment. Acta Pharmacol Sin. 2022;43:1556–67.

    Article  CAS  PubMed  Google Scholar 

  25. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol. 2017;66:1300–12.

    Article  CAS  PubMed  Google Scholar 

  26. Tsilimigras DI, Brodt P, Clavien PA, Muschel RJ, D’Angelica MI, Endo I, et al. Liver metastases. Nat Rev Dis Prim. 2021;7:27.

    Article  PubMed  Google Scholar 

  27. Zhao L, Lim SY, Gordon-Weeks AN, Tapmeier TT, Im JH, Cao YH, et al. Recruitment of a myeloid cell subset (CD11b/Gr1(mid)) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology. 2013;57:829–39.

    Article  CAS  PubMed  Google Scholar 

  28. Ramesh A, Kumar S, Nguyen A, Brouillard A, Kulkarni A. Lipid-based phagocytosis nanoenhancer for macrophage immunotherapy. Nanoscale. 2020;12:1875–85.

    Article  CAS  PubMed  Google Scholar 

  29. Folkes AS, Feng MY, Zain JM, Abdulla F, Rosen ST, Querfeld C. Targeting CD47 as a cancer therapeutic strategy: the cutaneous T-cell lymphoma experience. Curr Opin Oncol. 2018;30:332–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yan WL, Lang TQ, Yuan WH, Yin Q, Li YP. Nanosized drug delivery systems modulate the immunosuppressive microenvironment to improve cancer immunotherapy. Acta Pharmacol Sin. 2022;43:3045–54.

    Article  CAS  PubMed  Google Scholar 

  31. Bader JE, Enos RT, Velazquez KT, Carson MS, Nagarkatti M, Nagarkatti PS, et al. Macrophage depletion using clodronate liposomes decreases tumorigenesis and alters gut microbiota in the AOM/DSS mouse model of colon cancer. Am J Physiol Gastrointest Liver Physiol. 2018;314:G22–31.

    Article  PubMed  Google Scholar 

  32. Conde J, Bao CC, Tan YQ, Cui DX, Edelman ER, Azevedo HS, et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Adv Funct Mater. 2015;25:4183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He YY, de Araujo RF, Cruz LJ, Eich C. Functionalized nanoparticles targeting tumor-associated macrophages as cancer therapy. Pharmaceutics. 2021;13:1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qian Y, Qiao S, Dai YF, Xu GQ, Dai BL, Lu LS, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11:9536–49.

    Article  CAS  PubMed  Google Scholar 

  35. Han Y, Ding BX, Zhao ZQ, Zhang HQ, Sun B, Zhao YP, et al. Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency. Biomaterials. 2018;185:205–18.

    Article  CAS  PubMed  Google Scholar 

  36. Dehghankelishadi P, Maritz MF, Badiee P, Thierry B. High density lipoprotein nanoparticle as delivery system for radio-sensitising miRNA: an investigation in 2D/3D head and neck cancer models. Int J Pharm. 2022;617:121585.

    Article  CAS  PubMed  Google Scholar 

  37. Mei YJ, Tang L, Xiao QQ, Zhang ZQ, Zhang ZY, Zang J, et al. Reconstituted high density lipoprotein (rHDL), a versatile drug delivery nanoplatform for tumor targeted therapy. J Mater Chem B. 2021;9:612–33.

    Article  CAS  PubMed  Google Scholar 

  38. Delk SC, Chattopadhyay A, Escola-Gil JC, Fogelman AM, Reddy ST. Apolipoprotein mimetics in cancer. Semin Cancer Biol. 2021;73:158–68.

    Article  CAS  PubMed  Google Scholar 

  39. Ossoli A, Wolska A, Remaley AT, Gomaraschi M. High-density lipoproteins: a promising tool against cancer. Biochim Biophys Acta Mol Cell Biol Lipids. 2022;1867:159068.

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Zheng C, Zhai Y, Cai Y, Lee RJ, Xing J, et al. High-density lipoprotein modulates tumor-associated macrophage for chemoimmunotherapy of hepatocellular carcinoma. Nano Today. 2021;37:101064.

    Article  CAS  Google Scholar 

  41. Zheng C, Zhang W, Wang J, Zhai Y, Xiong F, Cai Y, et al. Lenvatinib- and Vadimezan-loaded synthetic high-density lipoprotein for combinational immunochemotherapy of metastatic triple-negative breast cancer. Acta Pharm Sin B. 2022;12:3726–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release. 2011;153:141–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ho VW, Sly LM. Derivation and characterization of murine alternatively activated (M2) macrophages. Methods Mol Biol. 2009;531:173–85.

    Article  CAS  PubMed  Google Scholar 

  44. Wang ZR, Li WP, Park J, Gonzalez KM, Scott AJ, Lu JQ. Camptothesome elicits immunogenic cell death to boost colorectal cancer immune checkpoint blockade. J Control Release. 2022;349:929–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lutz MB, Kukutsch N, Ogilvie ALJ, Rossner S, Koch F, Romani N, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods. 1999;223:77–92.

    Article  CAS  PubMed  Google Scholar 

  46. Trimaglio G, Tilkin Mariame AF, Feliu V, Lauzeral Vizcaino F, Tosolini M, Valle C, et al. Colon-specific immune microenvironment regulates cancer progression versus rejection. Oncoimmunology. 2020;9:1790125.

    Article  PubMed  PubMed Central  Google Scholar 

  47. VanRooijen N, Sanders A, vandenBerg TK. Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods. 1996;193:93–9.

    Article  CAS  Google Scholar 

  48. Crispe IN, Dao T, Klugewitz K, Mehal WZ, Metz DP. The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev. 2000;174:47–62.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou H, Liu ZT, Wang YX, Wen XY, Amador EH, Yuan LQ, et al. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther. 2022;7:70.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Deutsch E, Chargari C, Galluzzi L, Kroemer G. Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy. Lancet Oncol. 2019;20:e452–63.

    Article  CAS  PubMed  Google Scholar 

  51. Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin. 2023;44:288–307.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (32171374, 82270064, and 31870995) and Shandong Provincial Natural Science Foundation (ZR2019ZD25). The authors thank the staff of the Integrated Laser Microscopy System at the National Facility for Protein Science in Shanghai (NFPS) at Shanghai Advanced Research Institute, Chinese Academy of Sciences for sample preparation, data collection, and analysis. We thank scidraw.io for the mouse schematic.

Author information

Authors and Affiliations

Authors

Contributions

FQX and PCZ designed the research; FQX, WZ, CZ, YL, and XG performed the experiments; FQX, WZ, CZ, YL, XG, YZ, and PCZ analyzed the data; HW, PCZ, and YPL supervised the research; all the authors wrote and edited the manuscript.

Corresponding authors

Correspondence to Hao Wang, Peng-cheng Zhang or Ya-ping Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Fq., Zhang, W., Zheng, C. et al. Gemcitabine-loaded synthetic high-density lipoprotein preferentially eradicates hepatic monocyte-derived macrophages in mouse liver with colorectal cancer metastases. Acta Pharmacol Sin 44, 2331–2341 (2023). https://doi.org/10.1038/s41401-023-01110-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01110-w

  • Springer Nature Singapore Pte Ltd.

Keywords

Navigation