Skip to main content

Advertisement

Log in

Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Tumor vessels are characterized by abnormal morphology and hyperpermeability that together cause inefficient delivery of chemotherapeutic agents. Although vascular endothelial growth factor has been established as a critical regulator of tumor angiogenesis, the role of mechanical signaling in the regulation of tumor vasculature or tumor endothelial cell (TEC) function is not known. Here we show that the mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) regulates tumor angiogenesis and tumor vessel maturation via modulation of TEC mechanosensitivity. We found that TECs exhibit reduced TRPV4 expression and function, which is correlated with aberrant mechanosensitivity towards extracellular matrix stiffness, increased migration and abnormal angiogenesis by TEC. Further, syngeneic tumor experiments revealed that the absence of TRPV4 induced increased vascular density, vessel diameter and reduced pericyte coverage resulting in enhanced tumor growth in TRPV4 knockout mice. Importantly, overexpression or pharmacological activation of TRPV4 restored aberrant TEC mechanosensitivity, migration and normalized abnormal angiogenesis in vitro by modulating Rho activity. Finally, a small molecule activator of TRPV4, GSK1016790A, in combination with anticancer drug cisplatin, significantly reduced tumor growth in wild-type mice by inducing vessel maturation. Our findings demonstrate TRPV4 channels to be critical regulators of tumor angiogenesis and represent a novel target for anti-angiogenic and vascular normalization therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Fukumura D, Jain RK . Imaging angiogenesis and the microenvironment. APMIS 2008; 116: 695–715.

    Article  CAS  Google Scholar 

  2. Jain RK . Taming vessels to treat cancer. Sci Am 2008; 298: 56–63.

    Article  Google Scholar 

  3. Abdollahi A, Folkman J . Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 2010; 13: 16–28.

    Article  CAS  Google Scholar 

  4. Bergers G, Hanahan D . Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008; 8: 592–603.

    Article  CAS  Google Scholar 

  5. Casanovas O, Hicklin DJ, Bergers G, Hanahan D . Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005; 8: 299–309.

    Article  CAS  Google Scholar 

  6. Carmeliet P, Jain RK . Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473: 298–307.

    Article  CAS  Google Scholar 

  7. Duda DG, Batchelor TT, Willett CG, Jain RK . VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol Med 2007; 13: 223–230.

    Article  CAS  Google Scholar 

  8. Folkman J . Angiogenesis inhibitors: a new class of drugs. Cancer Biol Ther 2003; 2: S127–S133.

    CAS  PubMed  Google Scholar 

  9. Fukumura D, Jain RK . Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 2007; 74: 72–84.

    Article  CAS  Google Scholar 

  10. Jain RK, Carmeliet P . SnapShot: tumor angiogenesis. Cell 2012; 149: 1408–1408 e1401.

    Article  CAS  Google Scholar 

  11. Van der Veldt AA, Lubberink M, Bahce I, Walraven M, de Boer MP, Greuter HN et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 2012; 21: 82–91.

    Article  CAS  Google Scholar 

  12. Ingber DE . Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 2002; 91: 877–887.

    Article  CAS  Google Scholar 

  13. Ingber DE, Prusty D, Sun Z, Betensky H, Wang N . Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech 1995; 28: 1471–1484.

    Article  CAS  Google Scholar 

  14. Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM et al. A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 2009; 457: 1103–1108.

    Article  CAS  Google Scholar 

  15. Mammoto A, Mammoto T, Ingber DE . Rho signaling and mechanical control of vascular development. Curr Opin Hematol 2008; 15: 228–234.

    Article  CAS  Google Scholar 

  16. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL et al. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 2009; 104: 1123–1130.

    Article  CAS  Google Scholar 

  17. Ingber DE . Integrins, tensegrity, and mechanotransduction. Gravit Space Biol Bull 1997; 10: 49–55.

    CAS  PubMed  Google Scholar 

  18. Paszek MJ, Weaver VM . The tension mounts: mechanics meets morphogenesis and malignancy. J Mammary Gland Biol Neoplasia 2004; 9: 325–342.

    Article  Google Scholar 

  19. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8: 241–254.

    Article  CAS  Google Scholar 

  20. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE . Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci USA 2008; 105: 11305–11310.

    Article  CAS  Google Scholar 

  21. Martinac B . Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 2004; 117: 2449–2460.

    Article  CAS  Google Scholar 

  22. Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE . Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb) 2: 435–442.

    Article  CAS  Google Scholar 

  23. Sukharev S, Corey DP . Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 2004; 2004: re4.

    PubMed  Google Scholar 

  24. Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD . Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 2008; 28: 1046–1057.

    Article  CAS  Google Scholar 

  25. Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD . Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 2004; 24: 4444–4452.

    Article  CAS  Google Scholar 

  26. Lee HS, Millward-Sadler SJ, Wright MO, Nuki G, Salter DM . Integrin and mechanosensitive ion channel-dependent tyrosine phosphorylation of focal adhesion proteins and beta-catenin in human articular chondrocytes after mechanical stimulation. J Bone Miner Res 2000; 15: 1501–1509.

    Article  CAS  Google Scholar 

  27. Shakibaei M, Mobasheri A . Beta1-integrins co-localize with Na, K-ATPase, epithelial sodium channels (ENaC) and voltage activated calcium channels (VACC) in mechanoreceptor complexes of mouse limb-bud chondrocytes. Histol Histopathol 2003; 18: 343–351.

    CAS  PubMed  Google Scholar 

  28. Wilson PD, Geng L, Li X, Burrow CR . The PKD1 gene product, "polycystin-1," is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest 1999; 79: 1311–1323.

    CAS  PubMed  Google Scholar 

  29. Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C et al. Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One 2007; 2: e827.

    Article  Google Scholar 

  30. Dudley AC, Khan ZA, Shih SC, Kang SY, Zwaans BM, Bischoff J et al. Calcification of multipotent prostate tumor endothelium. Cancer Cell 2008; 14: 201–211.

    Article  CAS  Google Scholar 

  31. Adapala RK, Talasila PK, Bratz IN, Zhang DX, Suzuki M, Meszaros JG et al. PKCalpha mediates acetylcholine-induced activation of TRPV4-dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 2011; 301: H757–H765.

    Article  CAS  Google Scholar 

  32. Liedtke W . TRPV4 plays an evolutionary conserved role in the transduction of osmotic and mechanical stimuli in live animals. J Physiol 2005; 567: 53–58.

    Article  CAS  Google Scholar 

  33. Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R et al. TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 2010; 298: H466–H476.

    Article  CAS  Google Scholar 

  34. Ingber DE, Folkman J . Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 1989; 109: 317–330.

    Article  CAS  Google Scholar 

  35. Brackenbury WJ, Djamgoz MB . Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol 2006; 573: 343–356.

    Article  CAS  Google Scholar 

  36. Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, Fitzgerald EM, Campbell TM, Coombes RC et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philos Trans R Soc Lond B Biol Sci 2014; 369: 20130105.

    Article  Google Scholar 

  37. Baylie RL, Brayden JE . TRPV channels and vascular function. Acta Physiol (Oxf) 2011; 203: 99–116.

    Article  CAS  Google Scholar 

  38. Xu H, Fu Y, Tian W, Cohen DM . Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Renal Physiol 2006; 290: F1103–F1119.

    Article  CAS  Google Scholar 

  39. Adapala RK, Thoppil RJ, Luther DJ, Paruchuri S, Meszaros JG et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J Mol Cell Cardiol 2013; 54: 45–52.

    Article  CAS  Google Scholar 

  40. Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ et al. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA 2007; 104: 19138–143.

    Article  CAS  Google Scholar 

  41. Troidl C, Troidl K, Schierling W, Cai WJ, Nef H et al. Trpv4 induces collateral vessel growth during regeneration of the arterial circulation. J Cell Mol Med 2009; 13: 2613–2621.

    Article  Google Scholar 

  42. Hu F, Zhu W, Wang L . MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4. Arch Oral Biol 2013; 58: 192–199.

    Article  CAS  Google Scholar 

  43. Ren XD, Kiosses WB, Schwartz MA . Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. Embo J 1999; 18: 578–585.

    Article  CAS  Google Scholar 

  44. Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA . Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. Embo J 2001; 20: 4639–4647.

    Article  CAS  Google Scholar 

  45. Fiorio Pla A, Ong HL, Cheng KT, Brossa A, Bussolati B, Lockwich T et al. TRPV4 mediates tumor-derived endothelial cell migration via arachidonic acid-activated actin remodeling. Oncogene 2012; 31: 200–212.

    Article  CAS  Google Scholar 

  46. Folkman J . Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 1972; 175: 409–416.

    Article  CAS  Google Scholar 

  47. Folkman J, Merler E, Abernathy C, Williams G . Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275–288.

    Article  CAS  Google Scholar 

  48. Cuevas I, Boudreau N . Managing tumor angiogenesis: lessons from VEGF-resistant tumors and wounds. Adv Cancer Res 2009; 103: 25–42.

    Article  CAS  Google Scholar 

  49. Carmeliet P, Jain RK . Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011; 10: 417–427.

    Article  CAS  Google Scholar 

  50. Chae SS, Kamoun WS, Farrar CT, Kirkpatrick ND, Niemeyer E, de Graaf AM et al. Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 2010; 16: 3618–3627.

    Article  CAS  Google Scholar 

  51. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 2012; 7: 383–388.

    Article  CAS  Google Scholar 

  52. di Tomaso E, London N, Fuja D, Logie J, Tyrrell JA, Kamoun W et al. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS One 2009; 4: e5123.

    Article  Google Scholar 

  53. Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D et al. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 2011; 91: 1071–1121.

    Article  CAS  Google Scholar 

  54. Goel S, Wong AH, Jain RK . Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2012; 2: a006486.

    Article  Google Scholar 

  55. Jain RK . Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307: 58–62.

    Article  CAS  Google Scholar 

  56. Liu J, Liao S, Huang Y, Samuel R, Shi T, Naxerova K et al. PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res 2011; 17: 3638–3648.

    Article  CAS  Google Scholar 

  57. Thodeti CK, Massoumi R, Bindslev L, Sjolander A . Leukotriene D4 induces association of active RhoA with phospholipase C-gamma1 in intestinal epithelial cells. Biochem J 2002; 365: 157–163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the start-up funds from NEOMED and AHA (14GRNT20380935) (CKT) and NIH grants CA55833 and CA45548 (DI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C K Thodeti.

Ethics declarations

Competing interests

CKT and DI have rights in a patent based on some of the results presented in this manuscript. The remaining authors have no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adapala, R., Thoppil, R., Ghosh, K. et al. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy. Oncogene 35, 314–322 (2016). https://doi.org/10.1038/onc.2015.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.83

  • Springer Nature Limited

This article is cited by

Navigation