Skip to main content
Log in

The role of Plk3 in oncogenesis

  • Review
  • Published:
Oncogene Submit manuscript

Abstract

The polo-like kinases (Plks) encompass a family of five serine/threonine protein kinases that play essential roles in many cellular processes involved in the control of the cell cycle, including entry into mitosis, DNA replication and the response to different types of stress. Plk1, which has been validated as a cancer target, came into the focus of many pharmaceutical companies for the development of small-molecule inhibitors as anticancer agents. Recently, FDA (Food and Drug Administration) has granted a breakthrough therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. However, the various ATP-competitive inhibitors of Plk1 that are currently in clinical development also inhibit the activities of Plk2 and Plk3, which are considered as tumor suppressors. Plk3 contributes to the control and progression of the cell cycle while acting as a mediator of apoptosis and various types of cellular stress. The aberrant expression of Plk3 was found in different types of tumors. Recent progress has improved our understanding of Plk3 in regulating stress signaling and tumorigenesis. When using ATP-competitive Plk1 inhibitors, the biological roles of Plk1-related family members like Plk3 in cancer cells need to be considered carefully to improve treatment strategies against cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Strebhardt K, Ullrich A . Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8: 473–480.

    Article  CAS  PubMed  Google Scholar 

  2. Bange J, Zwick E, Ullrich A . Molecular targets for breast cancer therapy and prevention. Nat Med 2001; 7: 548–552.

    Article  CAS  PubMed  Google Scholar 

  3. Kavallaris M . Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 2010; 10: 194–204.

    Article  CAS  PubMed  Google Scholar 

  4. Jordan MA, Wilson L . Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253–265.

    Article  CAS  PubMed  Google Scholar 

  5. Sunkel CE, Glover DM . polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J Cell Sci 1988; 89: 25–38.

    Article  PubMed  Google Scholar 

  6. Llamazares S, Moreira A, Tavares A, Girdham C, Spruce BA, Gonzalez C et al. polo encodes a protein kinase homolog required for mitosis in Drosophila. Genes Dev 1991; 5: 2153–2165.

    Article  CAS  PubMed  Google Scholar 

  7. Archambault V, Glover DM . Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 2009; 10: 265–275.

    Article  CAS  PubMed  Google Scholar 

  8. Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M . Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15: 433–452.

    Article  CAS  PubMed  Google Scholar 

  9. de Carcer G, Manning G, Malumbres M . From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 2011; 10: 2255–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petronczki M, Lenart P, Peters JM . Polo on the rise-from mitotic entry to cytokinesis with Plk1. Dev Cell 2008; 14: 646–659.

    Article  CAS  PubMed  Google Scholar 

  11. van de Weerdt BC, Medema RH . Polo-like kinases: a team in control of the division. Cell Cycle 2006; 5: 853–864.

    Article  CAS  PubMed  Google Scholar 

  12. Barr FA, Sillje HH, Nigg EA . Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 2004; 5: 429–440.

    Article  CAS  PubMed  Google Scholar 

  13. Craig SN, Wyatt MD, McInnes C . Current assessment of polo-like kinases as anti-tumor drug targets. Expert Opin Drug Discov 2014; 9: 773–789.

    Article  CAS  PubMed  Google Scholar 

  14. Gjertsen BT, Schoffski P . Discovery and development of the polo-like kinase inhibitor volasertib in cancer therapy. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund UK, 2014.

    Google Scholar 

  15. Strebhardt K, Ullrich A . Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 2006; 6: 321–330.

    Article  CAS  PubMed  Google Scholar 

  16. Strebhardt K . Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nature reviews Drug discovery 2010; 9: 643–660.

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Erikson RL . Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci USA 2003; 100: 5789–5794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cholewa BD, Liu X, Ahmad N . The role of polo-like kinase 1 in carcinogenesis: cause or consequence? Cancer Res 2013; 73: 6848–6855.

    Article  CAS  PubMed  Google Scholar 

  19. McInnes C, Wyatt MD . PLK1 as an oncology target: current status and future potential. Drug Discov Today 2011; 16: 619–625.

    Article  CAS  PubMed  Google Scholar 

  20. Eckerdt F, Yuan J, Strebhardt K . Polo-like kinases and oncogenesis. Oncogene 2005; 24: 267–276.

    Article  CAS  PubMed  Google Scholar 

  21. Berg T, Bug G, Ottmann OG, Strebhardt K . Polo-like kinases in AML. Expert Opin Investig Drugs 2012; 21: 1069–1074.

    Article  CAS  PubMed  Google Scholar 

  22. Dohner H, Lubbert M, Fiedler W, Fouillard L, Haaland A, Brandwein JM et al. Randomized, phase 2 trial comparing low-dose cytarabine with or without volasertib in AML patients not suitable for intensive induction therapy. Blood 2014; 124: 1426–1433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rudolph D, Steegmaier M, Hoffmann M, Grauert M, Baum A, Quant J et al. BI 6727, a polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin Cancer Res 2009; 15: 3094–3102.

    CAS  PubMed  Google Scholar 

  24. Steegmaier M, Hoffmann M, Baum A, Lenart P, Petronczki M, Krssak M et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 2007; 17: 316–322.

    Article  CAS  PubMed  Google Scholar 

  25. Valsasina B, Beria I, Alli C, Alzani R, Avanzi N, Ballinari D et al. NMS-P937, an orally available, specific, small molecule polo-like kinase 1 inhibitor with antitumor activity in solid and haematological malignancies. Mol Cancer Ther 2012; 11: 1006–1016.

    Article  CAS  PubMed  Google Scholar 

  26. Gilmartin AG, Bleam MR, Richter MC, Erskine SG, Kruger RG, Madden L et al. Distinct concentration-dependent effects of the polo-like kinase 1-specific inhibitor GSK461364A, including differential effect on apoptosis. Cancer Res 2009; 69: 6969–6977.

    Article  CAS  PubMed  Google Scholar 

  27. Holtrich U, Wolf G, Brauninger A, Karn T, Bohme B, Rubsamen-Waigmann H et al. Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc Natl Acad Sci USA 1994; 91: 1736–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knecht R, Elez R, Oechler M, Solbach C, von Ilberg C, Strebhardt K . Prognostic significance of polo-like kinase (PLK) expression in squamous cell carcinomas of the head and neck. Cancer Res 1999; 59: 2794–2797.

    CAS  PubMed  Google Scholar 

  29. Raab M, Pachl F, Kramer A, Kurunci-Csacsko E, Dotsch C, Knecht R et al. Quantitative chemical proteomics reveals a Plk1 inhibitor-compromised cell death pathway in human cells. Cell Res 2014; 24: 1141–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kneisel L, Strebhardt K, Bernd A, Wolter M, Binder A, Kaufmann R . Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol 2002; 29: 354–358.

    Article  PubMed  Google Scholar 

  31. Strebhardt K, Kneisel L, Linhart C, Bernd A, Kaufmann R . Prognostic value of pololike kinase expression in melanomas. JAMA 2000; 283: 479–480.

    Article  CAS  PubMed  Google Scholar 

  32. Donohue PJ, Alberts GF, Guo Y, Winkles JA . Identification by targeted differential display of an immediate early gene encoding a putative serine/threonine kinase. J Biol Chem 1995; 270: 10351–10357.

    Article  CAS  PubMed  Google Scholar 

  33. Kauselmann G, Weiler M, Wulff P, Jessberger S, Konietzko U, Scafidi J et al. The polo-like protein kinases Fnk and Snk associate with a Ca(2+)- and integrin-binding protein and are regulated dynamically with synaptic plasticity. EMBO J 1999; 18: 5528–5539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bergeron M, Motter R, Tanaka P, Fauss D, Babcock M, Chiou SS et al. In vivo modulation of polo-like kinases supports a key role for PLK2 in Ser129 alpha-synuclein phosphorylation in mouse brain. Neuroscience 2014; 256: 72–82.

    Article  CAS  PubMed  Google Scholar 

  35. Inglis KJ, Chereau D, Brigham EF, Chiou SS, Schobel S, Frigon NL et al. Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J Biol Chem 2009; 284: 2598–2602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mbefo MK, Paleologou KE, Boucharaba A, Oueslati A, Schell H, Fournier M et al. Phosphorylation of synucleins by members of the polo-like kinase family. J Biol Chem 2010; 285: 2807–2822.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou JX, Zhang HB, Huang Y, He Y, Zheng Y, Anderson JP et al. Tenuigenin attenuates alpha-synuclein-induced cytotoxicity by down-regulating polo-like kinase 3. CNS Neurosci Ther 2013; 19: 688–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ouyang B, Pan H, Lu L, Li J, Stambrook P, Li B et al. Human Prk is a conserved protein serine/threonine kinase involved in regulating M phase functions. J Biol Chem 1997; 272: 28646–28651.

    Article  CAS  PubMed  Google Scholar 

  39. Li B, Ouyang B, Pan H, Reissmann PT, Slamon DJ, Arceci R et al. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J Biol Chem 1996; 271: 19402–19408.

    Article  CAS  PubMed  Google Scholar 

  40. Holtrich U, Wolf G, Yuan J, Bereiter-Hahn J, Karn T, Weiler M et al. Adhesion induced expression of the serine/threonine kinase Fnk in human macrophages. Oncogene 2000; 19: 4832–4839.

    Article  CAS  PubMed  Google Scholar 

  41. Chase D, Feng Y, Hanshew B, Winkles JA, Longo DL, Ferris DK . Expression and phosphorylation of fibroblast-growth-factor-inducible kinase (Fnk) during cell-cycle progression. Biochem J 1998; 333: 655–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bahassi el M, Conn CW, Myer DL, Hennigan RF, McGowan CH, Sanchez Y et al. Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene 2002; 21: 6633–6640.

    Article  CAS  PubMed  Google Scholar 

  43. Zimmerman WC, Erikson RL . Polo-like kinase 3 is required for entry into S phase. Proc Natl Acad Sci USA 2007; 104: 1847–1852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Q, Xie S, Chen J, Fukasawa K, Naik U, Traganos F et al. Cell cycle arrest and apoptosis induced by human polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol 2002; 22: 3450–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ruan Q, Wang Q, Xie S, Fang Y, Darzynkiewicz Z, Guan K et al. Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp Cell Res 2004; 294: 51–59.

    Article  CAS  PubMed  Google Scholar 

  46. Zimmerman WC, Erikson RL . Finding Plk3. Cell Cycle 2007; 6: 1314–1318.

    Article  CAS  PubMed  Google Scholar 

  47. Conn CW, Hennigan RF, Dai W, Sanchez Y, Stambrook PJ . Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, Plk3. Cancer Res 2000; 60: 6826–6831.

    CAS  PubMed  Google Scholar 

  48. Xie S, Wu H, Wang Q, Cogswell JP, Husain I, Conn C et al. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J Biol Chem 2001; 276: 43305–43312.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang N, Wang X, Jhanwar-Uniyal M, Darzynkiewicz Z, Dai W . Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J Biol Chem 2006; 281: 10577–10582.

    Article  CAS  PubMed  Google Scholar 

  50. Dai W, Li Y, Ouyang B, Pan H, Reissmann P, Li J et al. PRK, a cell cycle gene localized to 8p21, is downregulated in head and neck cancer. Genes Chromosomes Cancer 2000; 27: 332–336.

    Article  CAS  PubMed  Google Scholar 

  51. Li MJ, Wang WW, Chen SW, Shen Q, Min R . Radiation dose effect of DNA repair-related gene expression in mouse white blood cells. Med Sci Monit 2011; 17: BR290–BR297.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kis E, Szatmari T, Keszei M, Farkas R, Esik O, Lumniczky K et al. Microarray analysis of radiation response genes in primary human fibroblasts. Int J Radiat Oncol Biol Phys 2006; 66: 1506–1514.

    Article  CAS  PubMed  Google Scholar 

  53. Staib F, Robles AI, Varticovski L, Wang XW, Zeeberg BR, Sirotin M et al. The p53 tumor suppressor network is a key responder to microenvironmental components of chronic inflammatory stress. Cancer Res 2005; 65: 10255–10264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou T, Chou JW, Simpson DA, Zhou Y, Mullen TE, Medeiros M et al. Profiles of global gene expression in ionizing-radiation-damaged human diploid fibroblasts reveal synchronization behind the G1 checkpoint in a G0-like state of quiescence. Environ Health Perspect 2006; 114: 553–559.

    Article  CAS  PubMed  Google Scholar 

  55. Jen KY, Cheung VG . Identification of novel p53 target genes in ionizing radiation response. Cancer Res 2005; 65: 7666–7673.

    Article  CAS  PubMed  Google Scholar 

  56. Xie S, Wang Q, Wu H, Cogswell J, Lu L, Jhanwar-Uniyal M et al. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J Biol Chem 2001; 276: 36194–36199.

    Article  CAS  PubMed  Google Scholar 

  57. Xie S, Wu H, Wang Q, Kunicki J, Thomas RO, Hollingsworth RE et al. Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2. Cell Cycle 2002; 1: 424–429.

    Article  CAS  PubMed  Google Scholar 

  58. Pellegrino R, Calvisi DF, Ladu S, Ehemann V, Staniscia T, Evert M et al. Oncogenic and tumor suppressive roles of polo-like kinases in human hepatocellular carcinoma. Hepatology 2010; 51: 857–868.

    CAS  PubMed  Google Scholar 

  59. Li Z, Niu J, Uwagawa T, Peng B, Chiao PJ . Function of polo-like kinase 3 in NF-kappaB-mediated proapoptotic response. J Biol Chem 2005; 280: 16843–16850.

    Article  CAS  PubMed  Google Scholar 

  60. Lai WS, Parker JS, Grissom SF, Stumpo DJ, Blackshear PJ . Novel mRNA targets for tristetraprolin (TTP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol Cell Biol 2006; 26: 9196–9208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Horner TJ, Lai WS, Stumpo DJ, Blackshear PJ . Stimulation of polo-like kinase 3 mRNA decay by tristetraprolin. Mol Cell Biol 2009; 29: 1999–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blackshear PJ . Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover. Biochem Soc Trans 2002; 30: 945–952.

    Article  CAS  PubMed  Google Scholar 

  63. Cheng KY, Lowe ED, Sinclair J, Nigg EA, Johnson LN . The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J 2003; 22: 5757–5768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Elia AE, Cantley LC, Yaffe MB . Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 2003; 299: 1228–1231.

    Article  CAS  PubMed  Google Scholar 

  65. Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 2003; 115: 83–95.

    Article  CAS  PubMed  Google Scholar 

  66. Lee KS, Park JE, Kang YH, Zimmerman W, Soung NK, Seong YS et al. Mechanisms of mammalian polo-like kinase 1 (Plk1) localization: self- versus non-self-priming. Cell Cycle 2008; 7: 141–145.

    Article  CAS  PubMed  Google Scholar 

  67. Archambault V, D'Avino PP, Deery MJ, Lilley KS, Glover DM . Sequestration of polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev 2008; 22: 2707–2720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Alberts GF, Winkles JA . Murine FGF-inducible kinase is rapidly degraded via the nuclear ubiquitin-proteosome system when overexpressed in NIH 3T3 cells. Cell Cycle 2004; 3: 678–684.

    Article  CAS  PubMed  Google Scholar 

  69. Jang YJ, Lin CY, Ma S, Erikson RL . Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc Natl Acad Sci USA 2002; 99: 1984–1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu J, Shen C, Wang T, Quan J . Structural basis for the inhibition of polo-like kinase 1. Nat Struct Mol Biol 2013; 20: 1047–1053.

    Article  CAS  PubMed  Google Scholar 

  71. Bruinsma W, Macurek L, Freire R, Lindqvist A, Medema RH . Bora and Aurora-A continue to activate Plk1 in mitosis. J Cell Sci 2014; 127: 801–811.

    CAS  PubMed  Google Scholar 

  72. van de Weerdt BC, van Vugt MA, Lindon C, Kauw JJ, Rozendaal MJ, Klompmaker R et al. Uncoupling anaphase-promoting complex/cyclosome activity from spindle assembly checkpoint control by deregulating polo-like kinase 1. Mol Cell Biol 2005; 25: 2031–2044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Seki A, Coppinger JA, Jang CY, Yates JR, Fang G . Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 2008; 320: 1655–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Macurek L, Lindqvist A, Lim D, Lampson MA, Klompmaker R, Freire R et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 2008; 455: 119–123.

    Article  CAS  PubMed  Google Scholar 

  75. Lee KS, Erikson RL . Plk is a functional homolog of Saccharomyces cerevisiae Cdc5, and elevated Plk activity induces multiple septation structures. Mol Cell Biol 1997; 17: 3408–3417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang Y, Bai J, Shen R, Brown SA, Komissarova E, Huang Y et al. Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1 alpha under hypoxic conditions. Cancer Res 2008; 68: 4077–4085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. De Franceschi L, Tomelleri C, Matte A, Brunati AM, Bovee-Geurts PH, Bertoldi M et al. Erythrocyte membrane changes of chorea-acanthocytosis are the result of altered Lyn kinase activity. Blood 2011; 118: 5652–5663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S . Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem 2009; 81: 4493–4501.

    Article  CAS  PubMed  Google Scholar 

  79. Li H, Xing X, Ding G, Li Q, Wang C, Xie L et al. SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics 2009; 8: 1839–1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA, Gerber SA . Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and polo-like kinase activities in mitotic cells. Sci Signal 2011; 4: rs5.

    Article  CAS  PubMed  Google Scholar 

  81. Bai Y, Li J, Fang B, Edwards A, Zhang G, Bui M et al. Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res 2012; 72: 2501–2511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  83. Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472–482.

    Article  CAS  PubMed  Google Scholar 

  84. Luo J, Solimini NL, Elledge SJ . Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009; 136: 823–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang L, Gao J, Dai W, Lu L . Activation of polo-like kinase 3 by hypoxic stresses. J Biol Chem 2008; 283: 25928–25935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lu J, Wang L, Dai W, Lu L . Effect of hypoxic stress-activated polo-like kinase 3 on corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2010; 51: 5034–5040.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wang L, Dai W, Lu L . Stress-induced c-Jun activation mediated by polo-like kinase 3 in corneal epithelial cells. J Biol Chem 2007; 282: 32121–32127.

    Article  CAS  PubMed  Google Scholar 

  88. Bieging KT, Mello SS, Attardi LD . Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014; 14: 359–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Salvi M, Trashi E, Cozza G, Franchin C, Arrigoni G, Pinna LA . Investigation on PLK2 and PLK3 substrate recognition. Biochim Biophys Acta 2012; 1824: 1366–1373.

    Article  CAS  PubMed  Google Scholar 

  90. Iida M, Matsuda M, Komatani H . Plk3 phosphorylates topoisomerase IIalpha at Thr(1342), a site that is not recognized by Plk1. Biochem J 2008; 411: 27–32.

    Article  CAS  PubMed  Google Scholar 

  91. Wang J, Beauchemin M, Bertrand R . Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal 2011; 23: 2030–2038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC et al. GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 2008; 13: 36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bahassi el M, Hennigan RF, Myer DL, Stambrook PJ . Cdc25C phosphorylation on serine 191 by Plk3 promotes its nuclear translocation. Oncogene 2004; 23: 2658–2663.

    Article  PubMed  CAS  Google Scholar 

  94. Zhang H, Shi X, Paddon H, Hampong M, Dai W, Pelech S . B23/nucleophosmin serine 4 phosphorylation mediates mitotic functions of polo-like kinase 1. J Biol Chem 2004; 279: 35726–35734.

    Article  CAS  PubMed  Google Scholar 

  95. Lopez-Sanchez I, Sanz-Garcia M, Lazo PA . Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces Golgi fragmentation. Mol Cell Biol 2009; 29: 1189–1201.

    Article  CAS  PubMed  Google Scholar 

  96. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2012; 40: D261–D270.

    Article  CAS  PubMed  Google Scholar 

  97. Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH . Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2000; 2: 672–676.

    Article  CAS  PubMed  Google Scholar 

  98. Bahassi el M, Myer DL, McKenney RJ, Hennigan RF, Stambrook PJ . Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat Res 2006; 596: 166–176.

    Article  CAS  PubMed  Google Scholar 

  99. Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 2000; 288: 1425–1429.

    Article  CAS  PubMed  Google Scholar 

  100. Molinari M, Mercurio C, Dominguez J, Goubin F, Draetta GF . Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep 2000; 1: 71–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J . The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001; 410: 842–847.

    Article  CAS  PubMed  Google Scholar 

  102. Di Leonardo A, Linke SP, Clarkin K, Wahl GM . DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 1994; 8: 2540–2551.

    Article  CAS  PubMed  Google Scholar 

  103. Myer DL, Robbins SB, Yin M, Boivin GP, Liu Y, Greis KD et al. Absence of polo-like kinase 3 in mice stabilizes Cdc25A after DNA damage but is not sufficient to produce tumors. Mutat Res 2011; 714: 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Myer DL, Bahassi el M, Stambrook PJ . The Plk3-Cdc25 circuit. Oncogene 2005; 24: 299–305.

    Article  CAS  PubMed  Google Scholar 

  105. Ouyang B, Li W, Pan H, Meadows J, Hoffmann I, Dai W . The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. Oncogene 1999; 18: 6029–6036.

    Article  CAS  PubMed  Google Scholar 

  106. Zhou BB, Elledge SJ . The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–439.

    Article  CAS  PubMed  Google Scholar 

  107. Lopez-Girona A, Furnari B, Mondesert O, Russell P . Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 1999; 397: 172–175.

    Article  CAS  PubMed  Google Scholar 

  108. Karin M, Liu Z, Zandi E . AP-1 function and regulation. Curr Opin Cell Biol 1997; 9: 240–246.

    Article  CAS  PubMed  Google Scholar 

  109. Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.

    Article  CAS  PubMed  Google Scholar 

  110. Angel P, Karin M . The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991; 1072: 129–157.

    CAS  PubMed  Google Scholar 

  111. Johnson RS, van Lingen B, Papaioannou VE, Spiegelman BM . A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 1993; 7: 1309–1317.

    Article  CAS  PubMed  Google Scholar 

  112. Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 1999; 13: 607–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Palmada M, Kanwal S, Rutkoski NJ, Gustafson-Brown C, Johnson RS, Wisdom R et al. c-jun is essential for sympathetic neuronal death induced by NGF withdrawal but not by p75 activation. J Cell Biology 2002; 158: 453–461.

    Article  CAS  Google Scholar 

  114. Behrens A, Sibilia M, Wagner EF . Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 1999; 21: 326–329.

    Article  CAS  PubMed  Google Scholar 

  115. Sang M, Ando K, Okoshi R, Koida N, Li Y, Zhu Y et al. Plk3 inhibits pro-apoptotic activity of p73 through physical interaction and phosphorylation. Genes Cells 2009; 14: 775–788.

    Article  CAS  PubMed  Google Scholar 

  116. Xu D, Yao Y, Jiang X, Lu L, Dai W . Regulation of PTEN stability and activity by Plk3. J Biol Chem 2010; 285: 39935–39942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Han ES, Muller FL, Perez VI, Qi W, Liang H, Xi L et al. The in vivo gene expression signature of oxidative stress. Physiol Genomics 2008; 34: 112–126.

    Article  CAS  PubMed  Google Scholar 

  118. Bertout JA, Patel SA, Simon MC . The impact of O2 availability on human cancer. Nat Rev Cancer 2008; 8: 967–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xu D, Yao Y, Lu L, Costa M, Dai W . Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF-1alpha. J Biol Chem 2010; 285: 38944–38950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li Z, Li J, Bi P, Lu Y, Burcham G, Elzey BD et al. Plk1 phosphorylation of PTEN causes a tumor-promoting metabolic state. Mol Cell Biol 2014; 34: 3642–3661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Carracedo A, Pandolfi PP . The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 2008; 27: 5527–5541.

    Article  CAS  PubMed  Google Scholar 

  122. Wang L, Dai W, Lu L . Hyperosmotic stress-induced corneal epithelial cell death through activation of polo-like kinase 3 and c-Jun. Invest Ophthalmol Vis Sci 2011; 52: 3200–3206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang L, Payton R, Dai W, Lu L . Hyperosmotic stress-induced ATF-2 activation through polo-like kinase 3 in human corneal epithelial cells. J Biol Chem 2011; 286: 1951–1958.

    Article  CAS  PubMed  Google Scholar 

  124. Mamrosh JL, Lee JM, Wagner M, Stambrook PJ, Whitby RJ, Sifers RN et al. Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution. eLife 2014; 3: e01694.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Spankuch-Schmitt B, Bereiter-Hahn J, Kaufmann M, Strebhardt K . Effect of RNA silencing of polo-like kinase-1 (PLK1) on apoptosis and spindle formation in human cancer cells. J Natl Cancer Inst 2002; 94: 1863–1877.

    Article  CAS  PubMed  Google Scholar 

  126. Raab M, Kappel S, Kramer A, Sanhaji M, Matthess Y, Kurunci-Csacsko E et al. Toxicity modelling of Plk1-targeted therapies in genetically engineered mice and cultured primary mammalian cells. Nat Commun 2011; 2: 395.

    Article  PubMed  CAS  Google Scholar 

  127. Utada Y, Emi M, Yoshimoto M, Kasumi F, Akiyama F, Sakamoto G et al. Allelic loss at 1p34-36 predicts poor prognosis in node-negative breast cancer. Clin Cancer Res 2000; 6: 3193–3198.

    CAS  PubMed  Google Scholar 

  128. Bieche I, Khodja A, Lidereau R . Deletion mapping in breast tumor cell lines points to two distinct tumor-suppressor genes in the 1p32-pter region, one of deleted regions (1p36.2) being located within the consensus region of LOH in neuroblastoma. Oncol Rep 1998; 5: 267–272.

    CAS  PubMed  Google Scholar 

  129. Iuchi T, Namba H, Iwadate Y, Shishikura T, Kageyama H, Nakamura Y et al. Identification of the small interstitial deletion at chromosome band 1p34-p35 and its association with poor outcome in oligodendroglial tumors. Genes Chromosomes Cancer 2002; 35: 170–175.

    Article  CAS  PubMed  Google Scholar 

  130. Weichert W, Denkert C, Schmidt M, Gekeler V, Wolf G, Kobel M et al. Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer 2004; 90: 815–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Weichert W, Kristiansen G, Winzer KJ, Schmidt M, Gekeler V, Noske A et al. Polo-like kinase isoforms in breast cancer: expression patterns and prognostic implications. Virchows Arch 2005; 446: 442–450.

    Article  CAS  PubMed  Google Scholar 

  132. Larsson E, Sander C, Marks D . mRNA turnover rate limits siRNA and microRNA efficacy. Mol Syst Biol 2010; 6: 433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McInnes C, Mezna M, Fischer PM . Progress in the discovery of polo-like kinase inhibitors. Curr Top Med Chem 2005; 5: 181–197.

    Article  CAS  PubMed  Google Scholar 

  134. McInnes C, Estes K, Baxter M, Yang Z, Farag DB, Johnston P et al. Targeting subcellular localization through the polo-box domain: non-ATP competitive inhibitors recapitulate a PLK1 phenotype. Mol Cancer Ther 2012; 11: 1683–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Shan HM, Wang T, Quan JM . Crystal structure of the polo-box domain of polo-like kinase 2. Biochem Biophys Res Commun 2015; 456: 780–784.

    Article  CAS  PubMed  Google Scholar 

  136. Yuan J, Kramer A, Eckerdt F, Kaufmann M, Strebhardt K . Efficient internalization of the polo-box of polo-like kinase 1 fused to an Antennapedia peptide results in inhibition of cancer cell proliferation. Cancer Res 2002; 62: 4186–4190.

    CAS  PubMed  Google Scholar 

  137. Reindl W, Yuan J, Kramer A, Strebhardt K, Berg T . Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions. Chem Biol 2008; 15: 459–466.

    Article  CAS  PubMed  Google Scholar 

  138. Reindl W, Yuan J, Kramer A, Strebhardt K, Berg T . A pan-specific inhibitor of the polo-box domains of polo-like kinases arrests cancer cells in mitosis. Chembiochem 2009; 10: 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  139. Yuan J, Sanhaji M, Kramer A, Reindl W, Hofmann M, Kreis NN et al. Polo-box domain inhibitor poloxin activates the spindle assembly checkpoint and inhibits tumor growth in vivo. Am J Pathol 2011; 179: 2091–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Srinivasrao G, Park JE, Kim S, Ahn M, Cheong C, Nam KY et al. Design and synthesis of a cell-permeable, drug-like small molecule inhibitor targeting the polo-box domain of polo-like kinase 1. PLoS One 2014; 9: e107432.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Qian WJ, Park JE, Lim D, Park SY, Lee KW, Yaffe MB et al. Peptide-based inhibitors of Plk1 polo-box domain containing mono-anionic phosphothreonine esters and their pivaloyloxymethyl prodrugs. Chem Biol 2013; 20: 1255–1264.

    Article  CAS  PubMed  Google Scholar 

  142. Winkles JA, Alberts GF . Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 2005; 24: 260–266.

    Article  CAS  PubMed  Google Scholar 

  143. Qian YW, Erikson E, Maller JL . Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol Cell Biol 1999; 19: 8625–8632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ma S, Charron J, Erikson RL . Role of Plk2 (Snk) in mouse development and cell proliferation. Mol Cell Biol 2003; 23: 6936–6943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German Cancer Consortium (DKTK) (Heidelberg), Sander-Stiftung, Carls-Stiftung, Deutsche Krebshilfe and BANSS Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Strebhardt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helmke, C., Becker, S. & Strebhardt, K. The role of Plk3 in oncogenesis. Oncogene 35, 135–147 (2016). https://doi.org/10.1038/onc.2015.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.105

  • Springer Nature Limited

This article is cited by

Navigation