Skip to main content
Log in

Diversity within the pRb pathway: is there a code of conduct?

  • Review
  • Published:
Oncogene Submit manuscript

Abstract

The failure of cell proliferation to be properly regulated is a hallmark of tumourigenesis. The retinoblastoma protein (pRb) pathway represents a key component in the regulation of the cell cycle and tumour suppression. Recent findings have revealed new levels of complexity reflecting a repertoire of post-translational modifications that occur on pRb together with its key effector E2F-1. Here we provide an overview of the modifications and consider the possibility of a ‘code’ that endows pRb with the ability to function in diverse physiological settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams PD . (2001). Regulation of the retinoblastoma tumor suppressor protein by cyclin/cdks. Biochim Biophys Acta 1471: M123–M133.

    CAS  PubMed  Google Scholar 

  • Adams PD, Li X, Sellers WR, Baker KB, Leng X, Harper JW et al. (1999). Retinoblastoma protein contains a C-terminal motif that targets it for phosphorylation by cyclin-cdk complexes. Mol Cell Biol 19: 1068–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT, Clarke SG . (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell 33: 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blattner C, Sparks A, Lane D . (1999). Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol Cell Biol 19: 3704–3713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonasio R, Lecona E, Reinberg D . (2010). MBT domain proteins in development and disease. Semin Cell Dev Biol 21: 221–230.

    CAS  PubMed  Google Scholar 

  • Brown MA, Sims 3rd RJ, Gottlieb PD, Tucker PW . (2006). Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5: 26.

    PubMed  PubMed Central  Google Scholar 

  • Campanero MR, Flemington EK . (1997). Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc Natl Acad Sci U S A 94: 2221–2226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carr SM, Munro S, Kessler B, Oppermann U, La Thangue NB . (2011). Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J 30: 317–327.

    CAS  PubMed  Google Scholar 

  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB . (2001a). Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3: 667–674.

    CAS  PubMed  Google Scholar 

  • Chan HM, Smith L, La Thangue NB . (2001b). Role of LXCXE motif-dependent interactions in the activity of the retinoblastoma protein. Oncogene 20: 6152–6163.

    CAS  PubMed  Google Scholar 

  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al. (2009). Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325: 834–840.

    CAS  PubMed  Google Scholar 

  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML et al. (1992). Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330.

    CAS  PubMed  Google Scholar 

  • Classon M, Harlow E . (2002). The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2: 910–917.

    CAS  PubMed  Google Scholar 

  • Cobrinik D . (2005). Pocket proteins and cell cycle control. Oncogene 24: 2796–2809.

    CAS  PubMed  Google Scholar 

  • Connell-Crowley L, Harper JW, Goodrich DW . (1997). Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation. Mol Biol Cell 8: 287–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Gu W . (2010). p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 16: 528–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delston RB, Matatall KA, Sun Y, Onken MD, Harbour JW . (2011). p38 phosphorylates Rb on Ser567 by a novel, cell cycle-independent mechanism that triggers Rb-Hdm2 interaction and apoptosis. Oncogene 30: 588–599.

    CAS  PubMed  Google Scholar 

  • Dick FA, Dyson N . (2003). pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol Cell 12: 639–649.

    CAS  PubMed  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    CAS  PubMed  Google Scholar 

  • Fagan R, Flint KJ, Jones N . (1994). Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein. Cell 78: 799–811.

    CAS  PubMed  Google Scholar 

  • Fang Y, Nicholl MB . (2011). Sirtuin 1 in malignant transformation: friend or foe? Cancer Lett 306: 10–14.

    CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD . (2003). Binary switches and modification cassettes in histone biology and beyond. Nature 425: 475–479.

    CAS  PubMed  Google Scholar 

  • Gonzalo S, Garcia-Cao M, Fraga MF, Schotta G, Peters AH, Cotter SE et al. (2005). Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7: 420–428.

    CAS  PubMed  Google Scholar 

  • Gorges LL, Lents NH, Baldassare JJ . (2008). The extreme COOH terminus of the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-373 and activation of E2F. Am J Physiol Cell Physiol 295: C1151–C1160.

    CAS  PubMed  Google Scholar 

  • Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B . (1993). Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72: 309–324.

    CAS  PubMed  Google Scholar 

  • Harbour JW, Dean DC . (2000). The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14: 2393–2409.

    CAS  PubMed  Google Scholar 

  • Harbour JW, Luo RX, Dei Santi A, Postigo AA, Dean DC . (1999). Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98: 859–869.

    CAS  PubMed  Google Scholar 

  • Hediger F, Gasser SM . (2006). Heterochromatin protein 1: don’t judge the book by its cover!. Curr Opin Genet Dev 16: 143–150.

    CAS  PubMed  Google Scholar 

  • Herrera RE, Chen F, Weinberg RA . (1996). Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts. Proc Natl Acad Sci U S A 93: 11510–11515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschi A, Cecchini M, Steinhardt RC, Schamber MR, Dick FA, Rubin SM . (2010). An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat Struct Mol Biol 17: 1051–1057.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue Y, Kitagawa M, Taya Y . (2007). Phosphorylation of pRB at Ser612 by Chk1/2 leads to a complex between pRB and E2F-1 after DNA damage. EMBO J 26: 2083–2093.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova IA, Nakrieko KA, Dagnino L . (2009). Phosphorylation by p38 MAP kinase is required for E2F1 degradation and keratinocyte differentiation. Oncogene 28: 52–62.

    CAS  PubMed  Google Scholar 

  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA . (1992). Effects of an Rb mutation in the mouse. Nature 359: 295–300.

    CAS  PubMed  Google Scholar 

  • Jackson PK, Eldridge AG . (2002). The SCF ubiquitin ligase: an extended look. Mol Cell 9: 923–925.

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD . (2001). Translating the histone code. Science 293: 1074–1080.

    CAS  PubMed  Google Scholar 

  • Khidr L, Chen PL . (2006). RB, the conductor that orchestrates life, death and differentiation. Oncogene 25: 5210–5219.

    CAS  PubMed  Google Scholar 

  • Knudsen ES, Wang JY . (1996). Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J Biol Chem 271: 8313–8320.

    CAS  PubMed  Google Scholar 

  • Knudsen KE, Booth D, Naderi S, Sever-Chroneos Z, Fribourg AF, Hunton IC et al. (2000). RB-dependent S-phase response to DNA damage. Mol Cell Biol 20: 7751–7763.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kontaki H, Talianidis I . (2010). Lysine methylation regulates E2F1-induced cell death. Mol Cell 39: 152–160.

    CAS  PubMed  Google Scholar 

  • Ledl A, Schmidt D, Muller S . (2005). Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. Oncogene 24: 3810–3818.

    CAS  PubMed  Google Scholar 

  • Leduc C, Claverie P, Eymin B, Col E, Khochbin S, Brambilla E et al. (2006). p14ARF promotes RB accumulation through inhibition of its Tip60-dependent acetylation. Oncogene 25: 4147–4154.

    CAS  PubMed  Google Scholar 

  • Lents NH, Gorges LL, Baldassare JJ . (2006). Reverse mutational analysis reveals threonine-373 as a potentially sufficient phosphorylation site for inactivation of the retinoblastoma tumor suppressor protein (pRB). Cell Cycle 5: 1699–1707.

    CAS  PubMed  Google Scholar 

  • Lin WC, Lin FT, Nevins JR . (2001). Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev 15: 1833–1844.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Lin FT, Ruppert JM, Lin WC . (2003). Regulation of E2F1 by BRCT domain-containing protein TopBP1. Mol Cell Biol 23: 3287–3304.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu K, Luo Y, Lin FT, Lin WC . (2004). TopBP1 recruits Brg1/Brm to repress E2F1-induced apoptosis, a novel pRb-independent and E2F1-specific control for cell survival. Genes Dev 18: 673–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longworth MS, Dyson NJ . (2010). pRb, a local chromatin organizer with global possibilities. Chromosoma 119: 1–11.

    CAS  PubMed  Google Scholar 

  • Lowe ED, Tews I, Cheng KY, Brown NR, Gul S, Noble ME et al. (2002). Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 41: 15625–15634.

    CAS  PubMed  Google Scholar 

  • Ludlow JW, Glendening CL, Livingston DM, DeCarprio JA . (1993). Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol Cell Biol 13: 367–372.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacLellan WR, Xiao G, Abdellatif M, Schneider MD . (2000). A novel Rb- and p300-binding protein inhibits transactivation by MyoD. Mol Cell Biol 20: 8903–8915.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markham D, Munro S, Soloway J, O'Connor DP, La Thangue NB . (2006). DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep 7: 192–198.

    CAS  PubMed  Google Scholar 

  • Martelli F, Hamilton T, Silver DP, Sharpless NE, Bardeesy N, Rokas M et al. (2001). p19ARF targets certain E2F species for degradation. Proc Natl Acad Sci U S A 98: 4455–4460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marti A, Wirbelauer C, Scheffner M, Krek W . (1999). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol 1: 14–19.

    CAS  PubMed  Google Scholar 

  • Martin C, Zhang Y . (2005). The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6: 838–849.

    CAS  PubMed  Google Scholar 

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T . (2000). Regulation of E2F1 activity by acetylation. EMBO J 19: 662–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K, Giacca M . (2000). E2F family members are differentially regulated by reversible acetylation. J Biol Chem 275: 10887–10892.

    CAS  PubMed  Google Scholar 

  • Meek DW, Anderson CW . (2009). Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol 1: a000950.

    PubMed  PubMed Central  Google Scholar 

  • Min J, Allali-Hassani A, Nady N, Qi C, Ouyang H, Liu Y et al. (2007). L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 14: 1229–1230.

    CAS  PubMed  Google Scholar 

  • Mittnacht S . (1998). Control of pRB phosphorylation. Curr Opin Genet Dev 8: 21–27.

    CAS  PubMed  Google Scholar 

  • Miyake S, Sellers WR, Safran M, Li X, Zhao W, Grossman SR et al. (2000). Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol Cell Biol 20: 8889–8902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller S, Hoege C, Pyrowolakis G, Jentsch S . (2001). SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol 2: 202–210.

    CAS  PubMed  Google Scholar 

  • Muller S, Ledl A, Schmidt D . (2004). SUMO: a regulator of gene expression and genome integrity. Oncogene 23: 1998–2008.

    PubMed  Google Scholar 

  • Munro S, Khaire N, Inche A, Carr S, La Thangue NB . (2010). Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 29: 2357–2367.

    CAS  PubMed  Google Scholar 

  • Nath N, Wang S, Betts V, Knudsen E, Chellappan S . (2003). Apoptotic and mitogenic stimuli inactivate Rb by differential utilization of p38 and cyclin-dependent kinases. Oncogene 22: 5986–5994.

    CAS  PubMed  Google Scholar 

  • Nguyen DX, Baglia LA, Huang SM, Baker CM, McCance DJ . (2004). Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J 23: 1609–1618.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L et al. (2003). Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5: 552–558.

    CAS  PubMed  Google Scholar 

  • Pickard A, Wong PP, McCance DJ . (2010). Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J Cell Sci 123: 3718–3726.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pickart CM, Eddins MJ . (2004). Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695: 55–72.

    CAS  PubMed  Google Scholar 

  • Polager S, Ginsberg D . (2008). E2F - at the crossroads of life and death. Trends Cell Biol 18: 528–535.

    CAS  PubMed  Google Scholar 

  • Puri PL, Sartorelli V, Yang XJ, Hamamori Y, Ogryzko VV, Howard BH et al. (1997). Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1: 35–45.

    CAS  PubMed  Google Scholar 

  • Rubin SM, Gall AL, Zheng N, Pavletich NP . (2005). Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 123: 1093–1106.

    CAS  PubMed  Google Scholar 

  • Saddic LA, West LE, Aslanian A, Yates 3rd JR, Rubin SM, Gozani O et al. (2010). Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 285: 37733–37740.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sahin F, Sladek TL . (2010). E2F-1 binding affinity for pRb is not the only determinant of the E2F-1 activity. Int J Biol Sci 6: 382–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulman BA, Lindstrom DL, Harlow E . (1998). Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci U S A 95: 10453–10458.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (2000). The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60: 3689–3695.

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18: 2699–2711.

    CAS  PubMed  Google Scholar 

  • Sims 3rd RJ, Reinberg D . (2008). Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 9: 815–820.

    CAS  PubMed  Google Scholar 

  • Stevens C, La Thangue NB . (2003). E2F and cell cycle control: a double-edged sword. Arch Biochem Biophys 412: 157–169.

    CAS  PubMed  Google Scholar 

  • Stevens C, Smith L, La Thangue NB . (2003). Chk2 activates E2F-1 in response to DNA damage. Nat Cell Biol 5: 401–409.

    CAS  PubMed  Google Scholar 

  • Templeton DJ, Park SH, Lanier L, Weinberg RA . (1991). Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc Natl Acad Sci U S A 88: 3033–3037.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trimarchi JM, Lees JA . (2002). Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11–20.

    CAS  PubMed  Google Scholar 

  • Trouche D, Cook A, Kouzarides T . (1996). The CBP co-activator stimulates E2F1/DP1 activity. Nucleic Acids Res 24: 4139–4145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida C, Miwa S, Kitagawa K, Hattori T, Isobe T, Otani S et al. (2005). Enhanced Mdm2 activity inhibits pRB function via ubiquitin-dependent degradation. EMBO J 24: 160–169.

    CAS  PubMed  Google Scholar 

  • Wang B, Liu K, Lin FT, Lin WC . (2004). A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis. J Biol Chem 279: 54140–54152.

    CAS  PubMed  Google Scholar 

  • Wang S, Nath N, Minden A, Chellappan S . (1999). Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases. EMBO J 18: 1559–1570.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg RA . (1995). The retinoblastoma protein and cell cycle control. Cell 81: 323–330.

    CAS  PubMed  Google Scholar 

  • Wilkinson KA, Henley JM . (2010). Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 428: 133–145.

    CAS  PubMed  Google Scholar 

  • Wong S, Weber JD . (2007). Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J 407: 451–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR et al. (1995). Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375: 694–698.

    CAS  PubMed  Google Scholar 

  • Xu M, Sheppard KA, Peng CY, Yee AS, Piwnica-Worms H . (1994). Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation. Mol Cell Biol 14: 8420–8431.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XJ . (2004). Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26: 1076–1087.

    CAS  PubMed  Google Scholar 

  • Yeste-Velasco M, Folch J, Pallas M, Camins A . (2009). The p38(MAPK) signaling pathway regulates neuronal apoptosis through the phosphorylation of the retinoblastoma protein. Neurochem Int 54: 99–105.

    CAS  PubMed  Google Scholar 

  • Zarkowska T, Mittnacht S . (1997). Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases. J Biol Chem 272: 12738–12746.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Reinberg D . (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15: 2343–2360.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Wang H, Li M, Rayburn ER, Agrawal S, Zhang R . (2005). Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway. Oncogene 24: 7238–7247.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CRUK, MRC, LRF, EU and AICR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N B La Thangue.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munro, S., Carr, S. & La Thangue, N. Diversity within the pRb pathway: is there a code of conduct?. Oncogene 31, 4343–4352 (2012). https://doi.org/10.1038/onc.2011.603

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.603

  • Springer Nature Limited

Keywords

This article is cited by

Navigation