Skip to main content

Advertisement

Log in

MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

The identification of target mRNAs is a key step for assessing the role of aberrantly expressed microRNAs in human cancer. MiR-221 is upregulated in human hepatocellular carcinoma (HCC) as well as in other malignancies. One proven target of miR-221 is CDKN1B/p27, whose downregulation affects HCC prognosis. Here, we proved that the cyclin-dependent kinase inhibitor (CDKI) CDKN1C/p57 is also a direct target of miR-221. Indeed, downregulation of both CDKN1B/p27 and CDKN1C/p57 occurs in response to miR-221 transfection into HCC-derived cells and a significant upregulation of both CDKN1B/p27 and CDKN1C/p57 occurs in response to antimiR-221 transfection. A direct interaction of miR-221 with a target site on the 3′ UTR of CDKN1C/p57 mRNA was also demonstrated. By controlling these two CDKIs, upregulation of miR-221 can promote growth of HCC cells by increasing the number of cells in S-phase. To assess the relevance of these studies in primary tumors, matched HCC and cirrhosis samples were assayed for miR-221, for CDKN1B/p27 and CDKN1C/p57 expression. MiR-221 was upregulated in 71% of HCCs, whereas CDKN1B/p27 and CDKN1C/p57 proteins were downregulated in 77% of cases. A significant inverse correlation between miR-221 and both CDKN1B/p27 and CDKN1C/p57 was found in HCCs. In conclusion, we suggest that miR-221 has an oncogenic function in hepatocarcinogenesis by targeting CDKN1B/p27 and CDKN1C/p57, hence promoting proliferation by controlling cell-cycle inhibitors. These findings establish a basis toward the development of therapeutic strategies aimed at blocking miR-221 in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A et al. (2006). Phase II study of Sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 24: 4293–4300.

    Article  CAS  PubMed  Google Scholar 

  • Bolondi L . (2003). Screening for hepatocellular carcinoma in cirrhosis. J Hepatol 39: 1076–1084.

    Article  PubMed  Google Scholar 

  • Bosch FX, Ribes J, Diaz M, Cleries R . (2004). Primary liver cancer: worldwide incidence and trends. Gastroenterology 127: S5–S16.

    Article  PubMed  Google Scholar 

  • Bruix J, Sherman M . (2005). Practice guidelines committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology 42: 1208–1236.

    Article  PubMed  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancer. Nat Rev Cancer 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu GC, Sabatino G et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358.

    Article  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Meyer N, Day CD, Khatod K, Maher ER, Cooper W, Reik W et al. (2003). Silencing of CDKN1C (p57/KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Widemann syndrome. J Med Genet 40: 797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edmonson HA, Steiner PE . (1954). Primary carcinoma of the liver. A study of 100 cases among 48.900 necropsies. Cancer 7: 462–503.

    Article  Google Scholar 

  • Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102: 18081–18086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafrè SA et al. (2007). MiR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting CDKN1B/p27. J Biol Chem 282: 23716–23724.

    Article  CAS  PubMed  Google Scholar 

  • Gillies JK, Lorimer IA . (2007). Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6: 2005–2009.

    Article  CAS  PubMed  Google Scholar 

  • Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P et al. (2007). Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25: 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG et al. (2007). Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67: 6092–6099.

    Article  CAS  PubMed  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui AM, Sun L, Kanai Y, Sakamoto M, Hirohashi S . (1998). Reduced p27Kip1 expression in hepatocellular carcinomas. Cancer Lett 132: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Takeda T, Sakon M, Tsujimoto M, Monden M, Matsuura N . (2001). Expression of CDKN1C/p57 protein in hepatocellular carcinoma. Oncology 61: 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). Ras is regulated by let-7 microRNA family. Cell 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

    Article  PubMed  Google Scholar 

  • Le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al. (2007). Regulation of the CDKN1B/p27 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26: 3699–3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al. (2006). Expression profiling identifies microRNA signatures in pancreatic cancer. Int J Cancer 120: 1046–1054.

    Article  Google Scholar 

  • Lee MH, Yang HY . (2001). Negative regulators of cyclin-dependent kinases and their roles in cancers. Cell Mol Life Sci 58: 1907–1922.

    Article  CAS  PubMed  Google Scholar 

  • Lei PP, Zhang ZJ, Shen LJ, Li JY, Zou Q, Zhang HX . (2005). Expression and hypermethylation of p27 kip1 in hepatocarcinogenesis. World J Gastroenterol 11: 4587–9451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lencioni R, Cioni D, Della Pina C, Crocetti L, Bartolozzi C . (2005). Imaging diagnosis. Semin Liver Dis 25: 162–170.

    Article  PubMed  Google Scholar 

  • Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Raoul JL, Zeuzem S et al. (2007). Sorafenib improves survival in hepatocellular carcinoma: results of a phase III randomized placebo-controlled trial. ASCO Meeting, Chicago.

  • Nakai S, Masaki T, Shiratori Y, Ohgi T, Morishita A, Kurokohchi K et al. (2002). Expression of p57(KIP2) in hepatocellular carcinoma: relationship between tumor differentiation and patient survival. Int J Oncol 20: 769–775.

    CAS  PubMed  Google Scholar 

  • Nan KJ, Guo H, Ruan ZP, Jing Z, Liu SX . (2005). Expression of CDKN1C/p57 and its relationship with clinicopathology, PCNA and p53 in primary hepatocellular carcinoma. World J Gastroenterol 11: 1237–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan KJ, Jing Z, Gong L . (2004). Expression and altered subcellular localization of the cyclin-dependent kinase inhibitor p27Kip1 in hepatocellular carcinoma. World J Gastroenterol 10: 1425–1430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrini M, Ferracin M, Sabbioni S, Croce CM . (2007). MicroRNAs in human cancer: from research to therapy. J Cell Sci 120: 1833–1840.

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    Article  CAS  PubMed  Google Scholar 

  • Sangiovanni A, Del Ninno E, Fasani P, De Fazio C, Ronchi G, Romeo R et al. (2004). Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. Gastroenterology 126: 1005–1014.

    Article  PubMed  Google Scholar 

  • Schwienbacher C, Gramantieri L, Scelfo R, Veronese A, Calin GA, Bolondi L et al. (2000). Gain of imprinting at chromosome 11p15: a pathogenetic mechanism identified in human hepatocarcinomas. Proc Natl Acad Sci USA 97: 5445–5449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soejima H, Nakagawachi T, Zhao W, Higashimoto K, Urano T, Matsukura S et al. (2004). Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer. Oncogene 23: 4380–4388.

    Article  CAS  PubMed  Google Scholar 

  • Tannapfel A, Grund D, Katalinic A, Uhlmann D, Köckerling F, Haugwitz U et al. (2000). Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer 89: 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Visone R, Russo L, Pallante P, De Martino I, Ferrero A, Leone V et al. (2007). MicroRNAs miR-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer 14: 791–798.

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Frisén J, Lee MH, Massagué J, Barbacid M . (1997). Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 11: 973–983.

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Liégeois NJ, Wong C, Finegold M, Hou H, Thompson JC et al. (1997). Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith–Wiedemann syndrome. Nature 387: 151–158.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC regional grant), by grants from Italian Ministero dell'Università e della Ricerca Scientifica and from Italian Ministero della Salute to MN; by Associazione Italiana per la Ricerca sul Cancro (AIRC regional grant) and Fondazione CARISBO to LB and by Program Project Grants from the National Cancer Institute to CMC and by a Kimmel Foundation Scholar award to GAC. FF is a recipient of a fellowship from Associazione Italiana per la Ricerca sul Cancro (AIRC) and MF is a recipient of a fellowship from Fondazione Italiana per la Ricerca sul Cancro (FIRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L Gramantieri or M Negrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornari, F., Gramantieri, L., Ferracin, M. et al. MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 27, 5651–5661 (2008). https://doi.org/10.1038/onc.2008.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.178

  • Springer Nature Limited

Keywords

This article is cited by

Navigation