Skip to main content
Log in

PARP: a transferase by any other name

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

A recent report shows that several 'poly-ADP-ribose-polymerases' may function exclusively as a family of endogenous mono-ADP-ribosyltransferases, providing a new, molecularly less complex and broadened cellular role for this elusive post-translational modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Domain architecture of the classic poly-ADP-ribose-polymerase PARP1 and the newly characterized mono-ADP-ribosyltransferase PARP10.
Figure 2: Classification of the poly-ADP-ribose-polymerase (PARP) family according to the structural model proposed by Kleine et al.7.

References

  1. Walsh, C.T. Posttranslational Modification of Proteins: Expanding Nature's Inventory (Roberts, Greenwood Village, Colorado, USA, 2006).

    Google Scholar 

  2. Krueger, K.M. & Barbieri, J.T. Clin. Microbiol. Rev. 8, 34–47 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ueda, K. & Hayaishi, O. Annu. Rev. Biochem. 54, 73–100 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Lupi, R., Corda, D. & Di Girolamo, M. J. Biol. Chem. 275, 9418–9424 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Hassa, P.O. & Hottiger, M.O. Front. Biosci. 13, 3046–3082 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Liszt, G., Ford, E., Kurtev, M. & Guarente, L. J. Biol. Chem. 280, 21313–21320 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kleine, H. et al. Mol. Cell 32, 57–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Yu, M. et al. Oncogene 24, 1982–1993 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Allis, C.D., Jenuwein, T. & Reinberg, D. Epigenetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2007).

    Google Scholar 

  10. Liou, G.G., Tanny, J.C., Kruger, R.G., Walz, T. & Moazed, D. Cell 121, 515–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Huse, M. & Kuriyan, J. Cell 109, 275–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Karras, G.I. et al. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kustatscher, G., Hothorn, M., Pugieux, C., Scheffzek, K. & Ladurner, A.G. Nat. Struct. Mol. Biol. 12, 624–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Dhalluin, C. et al. Nature 399, 491–496 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Jacobson, R.H., Ladurner, A.G., King, D.S. & Tjian, R. Science 288, 1422–1425 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.D. is funded by the European Union FP6 Marie Curie Research and Training Network “Chromatin Plasticity”. S.T. and K.D. are students in the European Molecular Biology Laboratory's International PhD Programme. A.G.L. acknowledges the financial support of the European Molecular Biology Laboratory.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Till, S., Diamantara, K. & Ladurner, A. PARP: a transferase by any other name. Nat Struct Mol Biol 15, 1243–1244 (2008). https://doi.org/10.1038/nsmb1208-1243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1208-1243

  • Springer Nature America, Inc.

This article is cited by

Navigation