Skip to main content

Advertisement

Log in

Easing selenocysteine into proteins

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Selenocysteinyl-tRNASec is used by many organisms from all three domains of life to incorporate selenocysteine (Sec) site-specifically into certain proteins. Two recent reports have identified a new Sec synthase that catalyzes the last step in the generation of this aminoacyl-tRNA in eukarya and archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Selenocysteine can be incorporated into specific proteins via read-through of an internal, in-frame UGA codon.
Figure 2: The biosynthesis of Sec-tRNASec in bacteria (top pathway) and in archaea and eukarya (bottom pathway).

References

  1. Bock, A. et al. Mol. Microbiol. 5, 515–520 (1991).

    Article  CAS  Google Scholar 

  2. Boyington, J.C., Gladyshev, V.N., Khangulov, S.V., Stadtman, T.C. & Sun, P.D. Science 275, 1305–1308 (1997).

    Article  CAS  Google Scholar 

  3. Raaijmakers, H.C. & Romao, M.J. J. Biol. Inorg. Chem. 11, 849–854 (2006).

    Article  CAS  Google Scholar 

  4. Bock, A., Thanbichler, M., Rother, M. & Resch, A. in Aminoacyl-tRNA Synthetases (eds. Ibba, M., Francklyn, C.S. & Cusack, S.) 320–327 (Landes Biosciences, Georgetown, Texas, USA, 2005).

    Google Scholar 

  5. Xu, X.M. et al. PLoS Biol. 5, e4 (2006).

    Article  Google Scholar 

  6. Yuan, J. et al. Proc. Natl. Acad. Sci. USA 103, 18923–18927 (2006).

    Article  CAS  Google Scholar 

  7. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.A. & Bock, A. Nature 331, 723–725 (1988).

    Article  CAS  Google Scholar 

  8. Forchhammer, K., Leinfelder, W., Boesmiller, K., Veprek, B. & Bock, A. J. Biol. Chem. 266, 6318–6323 (1991).

    CAS  PubMed  Google Scholar 

  9. Bilokapic, S., Korencic, D., Soll, D. & Weygand-Durasevic, I. Eur. J. Biochem. 271, 694–702 (2004).

    Article  CAS  Google Scholar 

  10. Wu, X.Q. & Gross, H.J. Nucleic Acids Res. 21, 5589–5594 (1993).

    Article  CAS  Google Scholar 

  11. Kaiser, J.T. et al. Biochemistry 44, 13315–13327 (2005).

    Article  CAS  Google Scholar 

  12. Carlson, B.A. et al. Proc. Natl. Acad. Sci. USA 101, 12848–12853 (2004).

    Article  CAS  Google Scholar 

  13. Sauerwald, A. et al. Science 307, 1969–1972 (2005).

    Article  CAS  Google Scholar 

  14. Gelpi, C., Sontheimer, E.J. & Rodriguez-Sanchez, J.L. Proc. Natl. Acad. Sci. USA 89, 9739–9743 (1992).

    Article  CAS  Google Scholar 

  15. Kernebeck, T., Lohse, A.W. & Grotzinger, J. Hepatology 34, 230–233 (2001).

    Article  CAS  Google Scholar 

  16. Leinfelder, W., Forchhammer, K., Veprek, B., Zehelein, E. & Bock, A. Proc. Natl. Acad. Sci. USA 87, 543–547 (1990).

    Article  CAS  Google Scholar 

  17. Forchhammer, K. & Bock, A. J. Biol. Chem. 266, 6324–6328 (1991).

    CAS  PubMed  Google Scholar 

  18. Feng, L. et al. in Aminoacyl-tRNA Synthetases (eds. Ibba, M., Francklyn, C.S. & Cusack, S.) 314–319 (Landes Biosciences, Georgetown, Texas, USA, 2005).

    Google Scholar 

  19. Krzycki, J.A. Curr. Opin. Microbiol. 8, 706–712 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendrickson, T. Easing selenocysteine into proteins. Nat Struct Mol Biol 14, 100–101 (2007). https://doi.org/10.1038/nsmb0207-100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0207-100

  • Springer Nature America, Inc.

This article is cited by

Navigation