Skip to main content
Log in

Molecular chaperones: providing a safe place to weather a midlife protein-folding crisis

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Contrary to conventional wisdom that molecular chaperones rely on hydrophobic interactions to bind a wide variety of client proteins in danger of misfolding, three recent studies reveal that the ATP-independent chaperone Spy exploits electrostatic interactions to bind its clients quickly, yet loosely enough to enable folding of the client while it is chaperone bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Protein folding involves the selective stabilization of the functional native conformation (N) of a protein, versus globally unfolded conformations (U), partially folded intermediates (I) and misfolded states (A).
Figure 2: Effects of Spy binding on the folding-energy landscape of Im7, a model in vivo substrate.

References

  1. Saibil, H. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).

    Article  CAS  Google Scholar 

  2. Shiau, A.K., Harris, S.F., Southworth, D.R. & Agard, D.A. Cell 127, 329–340 (2006).

    Article  CAS  Google Scholar 

  3. Mayer, M.P. Trends Biochem. Sci. 38, 507–514 (2013).

    Article  CAS  Google Scholar 

  4. Hartl, F.U., Bracher, A. & Hayer-Hartl, M. Nature 475, 324–332 (2011).

    Article  CAS  Google Scholar 

  5. King, J., Haase-Pettingell, C., Robinson, A.S., Speed, M. & Mitraki, A. FASEB J. 10, 57–66 (1996).

    Article  CAS  Google Scholar 

  6. Morimoto, R.I. Cold Spring Harb. Symp. Quant. Biol. 76, 91–99 (2011).

    Article  CAS  Google Scholar 

  7. Clare, D.K., Bakkes, P.J., van Heerikhuizen, H., van der Vies, S.M. & Saibil, H.R. Nature 457, 107–110 (2009).

    Article  CAS  Google Scholar 

  8. Buchner, J. Trends Biochem. Sci. 24, 136–141 (1999).

    Article  CAS  Google Scholar 

  9. Clerico, E.M., Tilitsky, J.M., Meng, W. & Gierasch, L.M. J. Mol. Biol. 427, 1575–1588 (2015).

    Article  CAS  Google Scholar 

  10. Nakatsukasa, K. & Brodsky, J.L. Traffic 9, 861–870 (2008).

    Article  CAS  Google Scholar 

  11. Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Nature 371, 614–619 (1994).

    Article  CAS  Google Scholar 

  12. Stull, F., Koldewey, P., Humes, J.R., Radford, S.E. & Bardwell, J.C. Nat. Struct. Mol. Biol. 23, 53–58 (2016).

    Article  CAS  Google Scholar 

  13. Koldewey, P., Stull, F., Horowitz, S., Martin, R. & Bardwell, J.C. Cell http://dx.doi.org/10.1016/j.cell.2016.05.054 (2016).

  14. Horowitz, S. et al. Nat. Struct. Mol. Biol. 23, 691–697 (2016).

    Article  CAS  Google Scholar 

  15. Quan, S. et al. Nat. Struct. Mol. Biol. 18, 262–269 (2011).

    Article  CAS  Google Scholar 

  16. Schreiber, G., Haran, G. & Zhou, H.X. Chem. Rev. 109, 839–860 (2009).

    Article  CAS  Google Scholar 

  17. Vijayakumar, M. et al. J. Mol. Biol. 278, 1015–1024 (1998).

    Article  CAS  Google Scholar 

  18. Heidary, S. et al. Biotechnol. Lett. 36, 1479–1484 (2014).

    Article  CAS  Google Scholar 

  19. Schwartz, R., Ting, C.S. & King, J. Genome Res. 11, 703–709 (2001).

    Article  CAS  Google Scholar 

  20. Miyazawa, S. & Jernigan, R.L. J. Mol. Biol. 256, 623–644 (1996).

    Article  CAS  Google Scholar 

  21. Gething, M.J. & Sambrook, J. Nature 355, 33–45 (1992).

    Article  CAS  Google Scholar 

  22. Clark, P.L. Trends Biochem. Sci. 29, 527–534 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L Clark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, P., Elcock, A. Molecular chaperones: providing a safe place to weather a midlife protein-folding crisis. Nat Struct Mol Biol 23, 621–623 (2016). https://doi.org/10.1038/nsmb.3255

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3255

  • Springer Nature America, Inc.

This article is cited by

Navigation