Skip to main content
Log in

The timing is right

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Yeast cells display synchronized oscillation between phases of high and low oxygen consumption accompanied by a program of cyclical gene expression. A study monitoring mRNA levels, histone modifications and chromatin occupancy of histone modifiers during the yeast metabolic cycle (YMC) at high temporal resolution reveals both 'just-in-time' supply of YMC gene products and new patterns of chromatin reconfiguration associated with transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The yeast metabolic cycle.
Figure 2: Modes of transcriptional regulation during the YMC.

References

  1. Kouzarides, T. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  2. Rando, O.J. & Winston, F. Genetics 190, 351–387 (2012).

    Article  CAS  Google Scholar 

  3. Kuang, Z. et al. Nat. Struct. Mol. Biol. 21, 854–863 (2014).

    Article  CAS  Google Scholar 

  4. Chance, B., Estabrook, R.W. & Ghosh, A. Proc. Natl. Acad. Sci. USA 51, 1244–1251 (1964).

    Article  CAS  Google Scholar 

  5. Lloyd, D. & Murray, D.B. Trends Biochem. Sci. 30, 373–377 (2005).

    Article  CAS  Google Scholar 

  6. Tu, B.P., Kudlicki, A., Rowicka, M. & McKnight, S.L. Science 310, 1152–1158 (2005).

    Article  CAS  Google Scholar 

  7. Bannister, A.J. & Kouzarides, T. Cell Res. 21, 381–395 (2011).

    Article  CAS  Google Scholar 

  8. Wozniak, G.G. & Strahl, B.D. Biochim. Biophys. Acta doi:10.1016/j.bbagrm.2014.03.002 (12 March 2014).

    Google Scholar 

  9. Santos-Rosa, H. et al. Nature 419, 407–411 (2002).

    Article  CAS  Google Scholar 

  10. Morillon, A., Karabetsou, N., Nair, A. & Mellor, J. Mol. Cell 18, 723–734 (2005).

    Article  CAS  Google Scholar 

  11. Carvin, C.D. & Kladde, M.P. J. Biol. Chem. 279, 33057–33062 (2004).

    Article  CAS  Google Scholar 

  12. Shi, X. et al. Nature 442, 96–99 (2006).

    Article  CAS  Google Scholar 

  13. Nourani, A., Utley, R.T., Allard, S. & Côté, J. EMBO J. 23, 2597–2607 (2004).

    Article  CAS  Google Scholar 

  14. Cai, L., Sutter, B.M., Li, B. & Tu, B.P. Mol Cell. 42, 426–437 (2011).

    Article  CAS  Google Scholar 

  15. Dion, M.F., Altschuler, S.J., Wu, L.F. & Rando, O.J. Proc. Natl. Acad. Sci. USA 102, 5501–5506 (2005).

    Article  CAS  Google Scholar 

  16. Laxman, S. & Tu, B.P. Curr. Opin. Genet. Dev. 20, 599–604 (2010).

    Article  CAS  Google Scholar 

  17. Laxman, S., Sutter, B.M. & Tu, B.P. PLoS ONE 5, e12595 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C Schultz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friis, R., Schultz, M. The timing is right. Nat Struct Mol Biol 21, 846–847 (2014). https://doi.org/10.1038/nsmb.2898

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2898

  • Springer Nature America, Inc.

Navigation