Skip to main content
Log in

Intimate liaison with SR proteins brings exon junction complexes to unexpected places

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Exon junction complexes (EJCs) are deposited on mRNAs during splicing and are key regulators of the post-transcriptional fate of messenger ribonucleoprotein particles (mRNPs). Two recent papers reporting on the transcriptome-wide mapping of EJC-binding sites in human cells reveal an unexpected heterogeneity of EJC distribution on mRNAs and a tight network of EJC–SR protein interactions contributing to the formation of a higher-order, compacted mRNP structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: EJCs are differentially loaded onto mRNA, both at the canonical −24-nt positions as well as at noncanonical positions, and form stable megadalton-sized complexes by interacting with SR proteins and with themselves.

References

  1. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  Google Scholar 

  2. Andersen, C.B. et al. Science 313, 1968–1972 (2006).

    Article  CAS  Google Scholar 

  3. Bono, F., Ebert, J., Lorentzen, E. & Conti, E. Cell 126, 713–725 (2006).

    Article  CAS  Google Scholar 

  4. Ballut, L. et al. Nat. Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  Google Scholar 

  5. Le Hir, H. & Seraphin, B. Cell 133, 213–216 (2008).

    Article  CAS  Google Scholar 

  6. Tange, T.Ø., Nott, A. & Moore, M.J. Curr. Opin. Cell Biol. 16, 279–284 (2004).

    Article  CAS  Google Scholar 

  7. Barbosa, I. et al. Nat. Struct. Mol. Biol. 19, 983–990 (2012).

    Article  CAS  Google Scholar 

  8. Steckelberg, A.L., Boehm, V., Gromadzka, A.M. & Gehring, N.H. Cell Rep. 2, 454–461 (2012).

    Article  CAS  Google Scholar 

  9. Saulière, J. et al. Nat. Struct. Mol. Biol. 19, 1124–1131 (2012).

    Article  Google Scholar 

  10. Singh, G. et al. Cell. 151, 750–764 (2012).

    Article  CAS  Google Scholar 

  11. Saulière, J. et al. Nat. Struct. Mol. Biol. 17, 1269–1271 (2010).

    Article  Google Scholar 

  12. Nicholson, P. et al. Cell. Mol. Life Sci. 67, 677–700 (2010).

    Article  CAS  Google Scholar 

  13. Bühler, M., Steiner, S., Mohn, F., Paillusson, A. & Mühlemann, O. Nat. Struct. Mol. Biol. 13, 462–464 (2006).

    Article  Google Scholar 

  14. Zhang, J., Sun, X., Qian, Y. & Maquat, L.E. RNA 4, 801–815 (1998).

    Article  CAS  Google Scholar 

  15. Viegas, M.H., Gehring, N.H., Breit, S., Hentze, M.W. & Kulozik, A.E. Nucleic Acids Res. 35, 4542–4551 (2007).

    Article  CAS  Google Scholar 

  16. Mishler, D.M., Christ, A.B. & Steitz, J.A. RNA 14, 2657–2670 (2008).

    Article  CAS  Google Scholar 

  17. Long, J.C. & Caceres, J.F. Biochem. J. 417, 15–27 (2009).

    Article  CAS  Google Scholar 

  18. Ideue, T., Sasaki, Y.T., Hagiwara, M. & Hirose, T. Genes Dev. 21, 1993–1998 (2007).

    Article  CAS  Google Scholar 

  19. Reichert, V.L., Le Hir, H., Jurica, M.S. & Moore, M.J. Genes Dev. 16, 2778–2791 (2002).

    Article  CAS  Google Scholar 

  20. Zhang, Z. & Krainer, A.R. Proc. Natl. Acad. Sci. USA 104, 11574–11579 (2007).

    Article  CAS  Google Scholar 

  21. Buchwald, G. et al. Proc. Natl. Acad. Sci. USA 107, 10050–10055 (2010).

    Article  CAS  Google Scholar 

  22. Ma, X.M., Yoon, S.O., Richardson, C.J., Julich, K. & Blenis, J. Cell 133, 303–313 (2008).

    Article  CAS  Google Scholar 

  23. Huang, Y. & Steitz, J.A. Mol. Cell 7, 899–905 (2001).

    Article  CAS  Google Scholar 

  24. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  Google Scholar 

  25. Sato, H., Hosoda, N. & Maquat, L.E. Mol. Cell 29, 255–262 (2008).

    Article  CAS  Google Scholar 

  26. Zhang, Z. & Krainer, A.R. Mol. Cell 16, 597–607 (2004).

    Article  CAS  Google Scholar 

  27. Gudikote, J.P., Imam, J.S., Garcia, R.F. & Wilkinson, M.F. Nat. Struct. Mol. Biol. 12, 801–809 (2005).

    Article  CAS  Google Scholar 

  28. Michlewski, G., Sanford, J.R. & Caceres, J.F. Mol. Cell 30, 179–189 (2008).

    Article  CAS  Google Scholar 

  29. Nott, A., Le Hir, H. & Moore, M.J. Genes Dev. 18, 210–222 (2004).

    Article  CAS  Google Scholar 

  30. Wiegand, H.L., Lu, S. & Cullen, B.R. Proc. Natl. Acad. Sci. USA 100, 11327–11332 (2003).

    Article  CAS  Google Scholar 

  31. Li, X. & Manley, J.L. Cell 122, 365–378 (2005).

    Article  CAS  Google Scholar 

  32. Silver, D.L. et al. Nat. Neurosci. 13, 551–558 (2010).

    Article  CAS  Google Scholar 

  33. Björk, P. et al. J. Cell Biol. 184, 555–568 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Mühlemann.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlemann, O. Intimate liaison with SR proteins brings exon junction complexes to unexpected places. Nat Struct Mol Biol 19, 1209–1211 (2012). https://doi.org/10.1038/nsmb.2454

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2454

  • Springer Nature America, Inc.

This article is cited by

Navigation