Skip to main content
Log in

The role of conformational flexibility in prion propagation and maintenance for Sup35p

  • Letter
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

The [PSI+] factor of Saccharomyces cerevisiae is a protein-based genetic element (prion) comprised of a heritable altered conformation of the cytosolic translation termination factor Sup35p. In vitro, the prion-determining region (NM) of Sup35p undergoes conformational conversion from a highly flexible soluble state to structured amyloid fibers, with a rate that is greatly accelerated by preformed NM fiber nuclei. Nucleated conformational conversion is the molecular basis of the genetic inheritance of [PSI+] and provides a new model for studying amyloidogenesis. Here we investigate the importance of structure and structural flexibility in soluble NM. Elevated temperatures, chemical chaperones and certain mutations in NM increase or change its structural content and inhibit or enhance nucleated conformational conversion. We propose that the structural flexibility of NM is particularly suited to allowing heritable protein-based changes in cellular behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Comparison of NMwt purified under denaturing and nondenaturing conditions.
Figure 2: Influences of temperature and chemical chaperones on NMwt secondary structure.
Figure 3: Influences of temperature and chemical chaperones on NMwt (10 μM) quaternary structure.
Figure 4: Influences of temperature and chemical chaperones on nucleated conformational conversion of NMwt (5 μM) in the presence of sonicated preformed NMwt fibers (5 % w/w) and monitored by CR binding.
Figure 5: Mutations in the oligopeptide repeats of NM influence structure and conformational conversion.

Similar content being viewed by others

References

  1. Patino, M.M., Liu, J.J., Glover, J.R. & Lindquist, S.L. Science 273, 622–626 (1996).

    Article  CAS  Google Scholar 

  2. Paushkin, S.V., Kushnirov, V.V., Smirnov, V.N. & Ter-Avanesyan, M.D. EMBO J. 15, 3127–3134 (1996).

    Article  CAS  Google Scholar 

  3. Stansfield, I. et al. EMBO J. 14, 4365–4373 (1995).

    Article  CAS  Google Scholar 

  4. Wickner, R.B. Science 264, 566–569 (1994).

    Article  CAS  Google Scholar 

  5. Serio, T.R. & Lindquist, S.L. Annu. Rev. Cell Dev. Biol. 15, 661–703 (1999).

    Article  CAS  Google Scholar 

  6. Prusiner, S.B. & Scott, M.R. Annu. Rev. Genet. 31, 139–175 (1997).

    Article  CAS  Google Scholar 

  7. Glover, J.R. et al. Cell 89, 811–819 (1997).

    Article  CAS  Google Scholar 

  8. Serio, T.R. et al. Science 289, 1317–1321 (2000).

    Article  CAS  Google Scholar 

  9. DePace, A.H., Santoso, A., Hillner, P. & Weissman, J.S. Cell 93, 1241–1252 (1998).

    Article  CAS  Google Scholar 

  10. Klunk, W.E., Jacob, R.F. & Mason, R.P. Methods Enzymol. 309, 285–305 (1999).

    Article  CAS  Google Scholar 

  11. Esler, W.P. et al. J. Struct. Biol. 130, 174–183 (2000).

    Article  CAS  Google Scholar 

  12. Dobson, C.M. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  Google Scholar 

  13. Kelly, J.W. Curr. Opin. Struct. Biol. 8, 101–106 (1998).

    Article  CAS  Google Scholar 

  14. Pain, R.H. Symp. Soc. Exp. Biol. 41, 21–33 (1987).

    CAS  PubMed  Google Scholar 

  15. Zhang, S. & Rich, A. Proc. Natl. Acad. Sci. USA 94, 23–28 (1997).

    Article  CAS  Google Scholar 

  16. Kayed, R. et al. J. Mol. Biol. 287, 781–796 (1999).

    Article  CAS  Google Scholar 

  17. Gursky, O. & Aleshkov, S. Biochim. Biophys. Acta. 1476, 93–102 (2000).

    Article  CAS  Google Scholar 

  18. Ramirez-Alvarado, M., Merkel, J.S. & Regan, L. Proc. Natl. Acad. Sci. USA 97, 8979–8984 (2000).

    Article  CAS  Google Scholar 

  19. Yang, D.S., Yip, C.M., Huang, T.H., Chakrabartty, A. & Fraser, P.E. J. Biol. Chem. 274, 32970–32974 (1999).

    Article  CAS  Google Scholar 

  20. Tuite, M.F., Mundy, C.R. & Cox, B.S. Genetics 98, 691–711 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Singer, M.A., Lindquist, S.L. Mol. Cell 1, 639–648 (1998).

    Article  CAS  Google Scholar 

  22. Liu, J.J. & Lindquist, S.L. Nature 400, 573–576 (1999).

    Article  CAS  Google Scholar 

  23. Wong, C. et al. EMBO J. 20, 377–386 (2001).

    Article  CAS  Google Scholar 

  24. Kocisko, D.A. et al. Proc. Natl. Acad. Sci. USA 92, 3923–3927 (1995).

    Article  CAS  Google Scholar 

  25. Tatzelt, J., Prusiner, S.B. & Welch, W.J. EMBO J. 15, 6363–6373 (1996).

    Article  CAS  Google Scholar 

  26. Eaglestone, S.S., Cox, B.S. & Tuite, M.F. EMBO J. 18, 1974–1981 (1999).

    Article  CAS  Google Scholar 

  27. True, H. & Lindquist, S.L. Nature 407, 477–485 (2000).

    Article  CAS  Google Scholar 

  28. Ter-Avanesyan, M.D. et al. Mol. Microbiol. 7, 683–692 (1993).

    Article  CAS  Google Scholar 

  29. Scheibel, T., Kowal, A, Bloom, J. & Lindquist, S.L. Curr. Biol. 11, 366–369 (2001).

    Article  CAS  Google Scholar 

  30. Gill, S.C. & von Hippel, P.H. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health, the Howard Hughes Medical Institute, the Keck Foundation, the University of Chicago Materials Research Science and Engineering Center and a postdoctoral fellowship of the Deutsche Forschungsgemeinschaft (T.S.). We gratefully acknowledge A. Kowal for Electron Microscopy, G. Sawicki for Atomic Force Microscopy, J.-J. Liu and H.-C. Chang for sharing unpublished results, J. Frederikson and J. Rehm for experimental help, and J. Bloom, M. Duennwald, T.F. Outeiro and H. True-Knob for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan L. Lindquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheibel, T., Lindquist, S. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat Struct Mol Biol 8, 958–962 (2001). https://doi.org/10.1038/nsb1101-958

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1101-958

  • Springer Nature America, Inc.

This article is cited by

Navigation