Skip to main content
Log in

The structure of Bacillus subtilis pectate lyase in complex with calcium

  • Article
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

We have solved the structure of the Bacillus subtilis pectate lyase (BsPel) in complex with calcium. The structure consists of a parallel β-helix domain and a loop region. The αL-bounded β-strand seen in BsPel is a new element of protein structure and its frequent occurrence suggests it is an important characteristic of the parallel β-helix. A pronounced cleft is formed between the loops and the parallel β-helix domain and we propose that this is the active site cleft. Calcium, essential for the activity of the enzyme, binds at the bottom of this cleft and an arginine residue close to the calcium, which is conserved across all pectin and pectate lyases, may be involved in catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pilnik, W. & Rombouts, F.M. In Enzymes and food processing (eds Birch,GG., Blakebrough,N. and Parker,K.J.), 105–128 (Applied Science Publishers Ltd., London; 1981.)

    Book  Google Scholar 

  2. Yoder, M.D., Keen, N.T. and Jurnak,F. New domain motif: The structure of pectate lyase C, a plant virulence factor. Science 260, 1503–1507 (1993).

    Article  CAS  Google Scholar 

  3. Yoder, M.D., Lietzke, S.E. & Jurnak, F. Unusual structural features in the parallel β-helix in pectate lyase. Structure 1, 241–245 (1993).

    Article  CAS  Google Scholar 

  4. Nasser,W., Chalet, F. & Robert-Baudouy, J. Purification and characterization of extracellular pectate lyase from Bacillus subtilis. Biochemie 72, 689–695 (1990).

    Article  CAS  Google Scholar 

  5. Nasser,W., Awadé, A.C., Reverchon, S. & Robert-Baudoy, J. Pectate lyase from Bacillus subtilis: molecular characterization of the gene, and properties of the cloned enzyme. FEBS Lett. 335, 319–326 (1993).

    Article  CAS  Google Scholar 

  6. Bernstein, F.C. et al. The protein databank: a computer based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  7. Jones, T.A. & Thirup, S. Using known substructures in protein model-building and crystallography. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  8. Carrell, C.J., Carrell, H.L., Erlebacher, J. & Glusker, J.P. Structural aspects of metal ion-carboxylate interactions. J. Am. chem. Soc. 110, 8651–8656 (1993).

    Article  Google Scholar 

  9. Gerlt, J.A. & Gassman, P.G. An explanation for rapid enzyme-catalyzed proton abstraction from carbon acids: Importance of late transition states in concerted mechanisms. J. Am. chem. Soc. 115, 11552–11568 (1993).

    Article  CAS  Google Scholar 

  10. Jenkins, J.A., Nasser, W., Scott, M., Pickersgill, R., Vignon, J.-C. & Robert-Baudouy, J. Crystallization and preliminary X-ray studies of the pectate lyase from Bacillus subtilis. J. molec. Biol. 228, 1255–1258 (1992).

    Article  CAS  Google Scholar 

  11. Pickersgill, R.W., Harris, G.W. & Jenkins, J.A. Determination of the structure of Bacillus subtilis pectate lyase. Proceedings of the CCP4 Meeting “From First Map to Final Model” in the press (1994).

    Google Scholar 

  12. Howard, A.J. et al. The use of an image proportional counter in macromolecular crystallography. J. appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  13. CCP4 suite, Computer programmes for protein crystallography, (Daresbury Laboratory Warrington, England).

  14. Jones, T.A., Zou, J-Y, Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these maps. Acta. crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  15. Zhang, K.Y.J. SQUASH-Combining constraints for macromolecular phase refinement and extension. Acta Crystallogr. D49, 213–222 (1993)

    CAS  Google Scholar 

  16. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  17. Lamzin,V.S. & Wilson, K.S. Automated refinement of protein models. Acta. crystallogr. D49, 129–147 (1993).

    CAS  Google Scholar 

  18. Driessen, H. et al. Restrain: restrained structure factor least-squares refinement program for macromolecular structures. J. appl. crystallogr. 22, 510–516 (1989).

    Article  CAS  Google Scholar 

  19. Kraulis, P.J. MOLSCRIPT; a program to produce both detailed and schematic plots of proteins. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickersgill, R., Jenkins, J., Harris, G. et al. The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat Struct Mol Biol 1, 717–723 (1994). https://doi.org/10.1038/nsb1094-717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1094-717

  • Springer Nature America, Inc.

This article is cited by

Navigation