Skip to main content

Advertisement

Log in

Aberrant expression of microRNAs in bladder cancer

  • Review Article
  • Published:

From Nature Reviews Urology

View current issue Sign up to alerts

Abstract

MicroRNAs (miRNAs), a class of small noncoding RNAs, regulate protein-coding gene expression by repressing translation or cleaving RNA transcripts in a sequence-specific manner. A growing body of evidence suggests that miRNAs contribute to bladder cancer development, progression and metastasis. Genome-wide miRNA expression signatures have been used to rapidly and precisely identify aberrant miRNA expression in bladder cancer. Based on reports describing miRNA signatures, several downregulated and upregulated miRNAs have been discovered. Examination of the differential expression of miRNAs between clinical bladder cancer and normal bladder tissue has led to the elucidation of 11 miRNA expression signatures. miRNAs downregulated in bladder cancer, such as miR-145, miR-143 and miR125b, are known to be tumour suppressors, whereas upregulated miRNAs, such as miR-183, miR-96, miR17-5p and miR-20a are oncogenic. Several studies have demonstrated the potential of miRNAs for providing prognostic information. miR-145 is the most frequently downregulated miRNA in bladder cancer and has been shown to significantly inhibit proliferation, migration and invasion. Understanding the role of differentially expressed miRNAs, as well as their molecular targets, in bladder cancer will provide an effective and promising strategy for miRNA-based therapeutics for the treatment of bladder cancer.

Key Points

  • Most clinical trials of chemotherapeutics for advanced bladder cancer have shown limited benefits, so new prognostic markers and effective treatment strategies are necessary

  • Examination of the differential expression of microRNAs (miRNAs) between clinical bladder cancer and normal bladder tissue has led to the elucidation of 11 bladder-cancer-specific miRNA expression signatures

  • miRNAs frequently observed in bladder cancer might be the driver molecules for cancer progression

  • Although some miRNAs might be promising prognostic markers, the results are somewhat inconsistent, and measurement of expression levels of miRNAs has not been standardized across studies

  • miRNAs have been shown to be involved in crucial cell mechanisms, such as apoptosis, the cell cycle and epithelial–mesenchymal transition

  • Dysregulation of signalling pathways downstream of miR-145 has been implicated in the progression of bladder cancer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The microRNA (miRNA) processing pathway.

Similar content being viewed by others

References

  1. Parkin, D. M., Bray, F., Ferlay, J. & Pisani, P. Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74–108 (2005).

    Article  PubMed  Google Scholar 

  2. Ferlay, J., Parkin, D. M. & Steliarova-Foucher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 46, 765–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Zuiverloon, T. C. et al. Markers predicting response to bacillus Calmette-Guérin immunotherapy in high-risk bladder cancer patients: a systematic review. Eur. Urol. 61, 1245–1256 (2012).

    Article  Google Scholar 

  4. Luke, C., Tracey, E., Stapleton, A. & Roder, D. Exploring contrary trends in bladder cancer incidence, mortality and survival: implications for research and cancer control. Intern. Med. J. 40, 357–362 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Meeks, J. J. et al. A systematic review of neoadjuvant and adjuvant chemotherapy for muscle-invasive bladder cancer. Eur. Urol. 62, 523–533 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Shirodkar, S. P. & Lokeshwar, V. B. Potential new urinary markers in the early detection of bladder cancer. Curr. Opin. Urol. 19, 488–493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nelson, K. M. & Weiss, G. J. MicroRNAs and cancer: past, present, and potential future. Mol. Cancer Ther. 7, 3655–3660 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Esquela-Kerscher, A. & Slack, F. J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Catto, J. W. et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur. Urol. 59, 671–681 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Youssef, Y. M. et al. Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur. Urol. 59, 721–730 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez, A. et al. Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1066 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O'Kelly, F. et al. MicroRNAs as putative mediators of treatment response in prostate cancer. Nat. Rev. Urol. 9, 397–407 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Gregory, R. I. & Shiekhattar, R. MicroRNA biogenesis and cancer. Cancer Res. 65, 3509–3512 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell. 30, 460–471 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, H. et al. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res. 68, 2530–2537 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Teo, M. T. et al. The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis 33, 581–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Davis, B. N. & Hata, A. microRNA in cancer: the involvement of aberrant microRNA biogenesis regulatory pathways. Genes Cancer 1, 1100–1114 (2010).

    Article  CAS  Google Scholar 

  28. Mavrakis, K. J., Leslie, C. S. & Wendel, H. G. Cooperative control of tumor suppressor genes by a network of oncogenic microRNAs. Cell Cycle 10, 2845–2849 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 11, 252–263 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Ory, B. & Ellisen, L. W. A microRNA-dependent circuit controlling p63/p73 homeostasis: p53 family cross-talk meets therapeutic opportunity. Oncotarget 2, 259–264 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Noonan, E. J., Place, R. F., Basak, S., Pookot, D. & Li, L. C. miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget 1, 349–358 (2010).

    PubMed  PubMed Central  Google Scholar 

  32. Erkan, E. P., Breakefield, X. O. & Saydam, O. miRNA signature of schwannomas: possible role(s) of “tumor suppressor” miRNAs in benign tumors. Oncotarget 2, 265–270 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nair, V. S., Maeda, L. S. & Ioannidis, J. P. Clinical outcome prediction by microRNAs in human cancer: a systematic review. J. Natl Cancer Inst. 104, 528–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. University of Manchester miRBase [online], (2013).

  35. Chen, Y. H. et al. Characterization of microRNAs expression profiling in one group of Chinese urothelial cell carcinoma identified by Solexa sequencing. Urol. Oncol. 31, 219–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Han, Y. et al. MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS ONE 6, e18286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoshino, H. et al. The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. Br. J. Cancer 104, 808–818 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Catto, J. W. et al. Distinct microRNA alterations characterize high- and low-grade bladder cancer. Cancer Res. 69, 8472–8481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dyrskjøt, L. et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res. 69, 4851–4860 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, G. et al. Up-regulation of microRNA in bladder tumor tissue is not common. Int. Urol. Nephrol. 42, 95–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Ichimi, T. et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int. J. Cancer 125, 345–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Hanke, M. et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol. Oncol. 28, 655–661 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Friedman, J. M. et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res. 69, 2623–2629 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, T. et al. MicroRNA-143 as a tumor suppressor for bladder cancer. J. Urol. 181, 1372–1380 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Gottardo, F. et al. Micro-RNA profiling in kidney and bladder cancers. Urol. Oncol. 25, 387–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Noguchi, S. et al. MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett. 307, 211–220 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Villadsen, S. B. et al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br. J. Cancer 106, 366–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Ostenfeld, M. S. et al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene 29, 1073–1084 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, L. et al. MicroRNA-125b suppresses the development of bladder cancer by targeting E2F3. Int. J. Cancer 128, 1758–1769 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Kawakami, K. et al. The functional significance of miR-1 and miR-133a in renal cell carcinoma. Eur. J. Cancer 48, 827–836 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Nohata, N. et al. Identification of novel molecular targets regulated by tumor suppressive miR-1/miR-133a in maxillary sinus squamous cell carcinoma. Int. J. Oncol. 39, 1099–1107 (2011).

    CAS  PubMed  Google Scholar 

  52. Kojima, S. et al. Tumour suppressors miR-1 and miR-133a target the oncogenic function of purine nucleoside phosphorylase (PNP) in prostate cancer. Br. J. Cancer 106, 405–413 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Nohata, N., Hanazawa, T., Enokida, H. & Seki, N. microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget 3, 9–21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lin, Y. et al. Cyclin-dependent kinase 4 is a novel target in microRNA-195-mediated cell cycle arrest in bladder cancer cells. FEBS Lett. 586, 442–447 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, C. et al. miRNA-100 inhibits human bladder urothelial carcinogenesis by directly targeting mTOR. Mol. Cancer Ther. 12, 207–219 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Zhou, Y. et al. MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand. J. Urol. http://dx.doi.org/10.3109/00365599.2012.748821.

  57. Mihelich, B. L. et al. miR-183-96-182 cluster is overexpressed in prostate tissue and regulates zinc homeostasis in prostate cells. J. Biol. Chem. 286, 44503–44511 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu, W. et al. Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study. BMC Cancer 11, 393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Myatt, S. S. et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 70, 367–377 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, Y. et al. Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS ONE 7, e52280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamada, Y. et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 102, 522–529 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Puerta-Gil, P. et al. miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. Am. J. Pathol. 180, 1808–1815 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Wiklund, E. D. et al. Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer 128, 1327–1334 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Veerla, S. et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int. J. Cancer 124, 2236–2242 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Yoshino, H. et al. Tumor suppressive microRNA-1 mediated novel apoptosis pathways through direct inhibition of splicing factor serine/arginine-rich 9 (SRSF9/SRp30c) in bladder cancer. Biochem. Biophys. Res. Commun. 417, 588–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Chiyomaru, T. et al. Functional role of LASP1 in cell viability and its regulation by microRNAs in bladder cancer. Urol. Oncol. 30, 434–443 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Cao, Y. et al. MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumour Biol. 32, 179–188 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Lodygin, D. et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7, 2591–2600 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Chiyomaru, T. et al. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br. J. Cancer 102, 883–891 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fei, X. et al. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett. 586, 392–397 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Adam, L. et al. miR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin. Cancer Res. 15, 5060–5072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kenney, P. A. et al. Novel ZEB1 expression in bladder tumorigenesis. BJU Int. 107, 656–663 (2011).

    Article  PubMed  Google Scholar 

  75. Bo, J. et al. microRNA-203 suppresses bladder cancer development by repressing bcl-w expression. FEBS J. 278, 786–792 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Saini, S. et al. Curcumin modulates microRNA-203-mediated regulation of the Src-Akt axis in bladder cancer. Cancer Prev. Res. (Phila.) 4, 1698–1709 (2011).

    Article  CAS  PubMed Central  Google Scholar 

  77. Chen, H. et al. MicroRNA-449a acts as a tumor suppressor in human bladder cancer through the regulation of pocket proteins. Cancer Lett. 320, 40–47 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Ueno, K. et al. Tumor suppressor microRNA-493 decreases cell motility and migration ability in human bladder cancer cells by downregulating RhoC and FZD4. Mol. Cancer Ther. 11, 244–253 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Hirata, H. et al. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 33, 41–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Lu, Q. et al. MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL. Urol. Oncol. 28, 635–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Gómez-Román, J. J. et al. Fibroblast growth factor receptor 3 is overexpressed in urinary tract carcinomas and modulates the neoplastic cell growth. Clin. Cancer Res. 11, 459–465 (2005).

    PubMed  Google Scholar 

  82. Huber, M. A., Kraut, N. & Beug, H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Xu, J., Lamouille, S. & Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19, 156–172 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Zaman, M. S. et al. The functional significance of microRNA-145 in prostate cancer. Br. J. Cancer 103, 256–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schepeler, T. et al. Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 68, 6416–6424 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Iorio, M. V. et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 67, 8699–8707 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Kano, M. et al. miR-145, miR-133a and miR-133b: tumor suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int. J. Cancer 127, 2804–2814 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Akao, Y., Nakagawa, Y., Kitade, Y., Kinoshita, T. & Naoe, T. Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci. 98, 1914–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Wang, L. et al. Gene networks and microRNAs implicated in aggressive prostate cancer. Cancer Res. 69, 9490–9497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sachdeva, M. & Mo, Y. Y. miR-145-mediated suppression of cell growth, invasion and metastasis. Am. J. Transl. Res. 2, 170–180 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Altuvia, Y. et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697–2706 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aqeilan, R. I., Calin, G. A. & Croce, C. M. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 17, 215–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Olive, V., Jiang, I. & He, L. mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int. J. Biochem. Cell Biol. 42, 1348–1354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Iio, A., Nakagawa, Y., Hirata, I., Naoe, T. & Akao, Y. Identification of noncoding RNAs embracing microRNA-143/145 cluster. Mol. Cancer 9, 136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, Y. & Lee, C. G. MicroRNA and cancer–focus on apoptosis. J. Cell. Mol. Med. 13, 12–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Dostalova Merkerova, M. et al. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur. J. Hum. Genet. 19, 313–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Suzuki, H. I. et al. Modulation of microRNA processing by p53. Nature 460, 529–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Sachdeva, M. et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc. Natl Acad. Sci. USA 106, 3207–3212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Levy, N., Yonish-Rouach, E., Oren, M. & Kimchi, A. Complementation by wild-type p53 of interleukin-6 effects on M1 cells: induction of cell cycle exit and cooperativity with c-myc suppression. Mol. Cell Biol. 13, 7942–7952 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Boominathan, L. The guardians of the genome (p53, TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev. 29, 613–639 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. Yoshino and N. Seki contributed equally to the discussion of content and writing of this article. H. Yoshino, T. Itesako and T. Chiyomaru researched data for the article. H. Enokida contributed to discussion of content. H. Enokida, N. Seki and M. Nakagawa reviewed the manuscript before submission.

Corresponding author

Correspondence to Hideki Enokida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Differentially expressed miRNAs in bladder cancer (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshino, H., Seki, N., Itesako, T. et al. Aberrant expression of microRNAs in bladder cancer. Nat Rev Urol 10, 396–404 (2013). https://doi.org/10.1038/nrurol.2013.113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.113

  • Springer Nature Limited

This article is cited by

Navigation