Skip to main content

Advertisement

Log in

Gene therapy approaches to regenerating the musculoskeletal system

  • Review Article
  • Published:

From Nature Reviews Rheumatology

View current issue Sign up to alerts

Key Points

  • Gene transfer offers a solution to the problem of delivering morphogens and other regenerative products sustainably to sites of injury

  • Nascent proteins synthesized locally after gene transfer are likely to have undergone authentic post-translational modification and have higher activity than recombinant counterparts

  • Gene transfer can provide regulated transgene expression and deliver products with an intracellular action (for example, transcription factors and noncoding RNAs) or proteins that need to be inserted into a specific cellular compartment (for example, receptors)

  • Several strategies exist for transferring genes to sites of injury using different viral or nonviral vectors in vivo or by ex vivo delivery in conjunction with progenitor or differentiated cells

  • Preclinical progress has been made in cartilage repair, bone healing and the regeneration of muscle, intervertebral disc, meniscus, tendon and ligament

  • A small number of osteoarthritis and cartilage repair clinical trials have taken place

Abstract

Injuries to the musculoskeletal system are common, debilitating and expensive. In many cases, healing is imperfect, which leads to chronic impairment. Gene transfer might improve repair and regeneration at sites of injury by enabling the local, sustained and potentially regulated expression of therapeutic gene products; such products include morphogens, growth factors and anti-inflammatory agents. Proteins produced endogenously as a result of gene transfer are nascent molecules that have undergone post-translational modification. In addition, gene transfer offers particular advantages for the delivery of products with an intracellular site of action, such as transcription factors and noncoding RNAs, and proteins that need to be inserted into a cell compartment, such as a membrane. Transgenes can be delivered by viral or nonviral vectors via in vivo or ex vivo protocols using progenitor or differentiated cells. The first gene transfer clinical trials for osteoarthritis and cartilage repair have already been completed. Various bone-healing protocols are at an advanced stage of development, including studies with large animals that could lead to human trials. Other applications in the repair and regeneration of skeletal muscle, intervertebral disc, meniscus, ligament and tendon are in preclinical development. In addition to scientific, medical and safety considerations, clinical translation is constrained by social, financial and logistical issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Strategies for gene transfer to sites of musculoskeletal injury.
Figure 2: Gene transfer to osteochondral defects using genetically modified, clotted, autologous bone marrow (gene plugs).
Figure 3: Healing of critical-size femoral defect in the rat using genetically modified muscle graft.

Similar content being viewed by others

References

  1. Jacobs, J. J. in The Burden of Musculoskeletal Diseases in the United States 2nd edn Ch. 6, 129–179 (American Academy of Orthopaedic Surgeons, 2011).

    Google Scholar 

  2. Evans, C. H. Advances in regenerative orthopedics. Mayo Clin. Proc. 88, 1323–1339 (2013).

    Article  PubMed  Google Scholar 

  3. Koria, P. Delivery of growth factors for tissue regeneration and wound healing. BioDrugs 26, 163–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Garg, T., Singh, O., Arora, S. & Murthy, R. Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carrier Syst. 29, 1–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Lam, J., Lu, S., Kasper, F. K., & Mikos, A. G. Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. http://dx.doi.org/10.1016/j.addr.2014.06.006.

  6. Evans, C. H. & Robbins, P. D. Genetically augmented tissue engineering of the musculoskeletal system. Clin. Orthop. Relat. Res. (367 Suppl.) S410–S418 (1999).

  7. Evans, C. Using genes to facilitate the endogenous repair and regeneration of orthopaedic tissues. Int. Orthop. 38, 1761–1769 (2014).

    Article  PubMed  Google Scholar 

  8. Ginn, S. L., Alexander, I. E., Edelstein, M. L., Abedi, M. R. & Wixon J. Gene therapy clinical trials worldwide to 2012—an update. J. Gene Med. 15, 65–77 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Raper, S. E. et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80, 148–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Getting arthritis gene therapy into the clinic. Nat. Rev. Rheumatol. 7, 244–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, W. Li, W., Ma, N., & Steinhoff, G. Non-viral gene delivery methods. Curr. Pharm. Biotechnol. 14, 46–60 (2013).

    CAS  PubMed  Google Scholar 

  13. Evans, C. H. et al. Facilitated endogenous repair: making tissue engineering simple, practical, and economical. Tissue Eng. 13, 1987–1993 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Minas, T. A primer in cartilage repair. J. Bone Joint Surg. 94, 141–146 (2012).

    Article  CAS  Google Scholar 

  15. Cucchiarini, M. et al. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol. Ther. 12, 229–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Cucchiarini, M. & Madry, H. Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther. 21, 811–819 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Cucchiarini, M. Orth, P. & Madry, H. Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J. Mol. Med. (Berl.) 91, 625–636 (2013).

    Article  CAS  Google Scholar 

  18. Pascher, A. et al. Gene delivery to cartilage defects using coagulated bone marrow aspirate. Gene Ther. 11, 133–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Neumann, A. J., Schroeder, J., Alini, M., Archer, C. W. & Stoddart, M. J. Enhanced adenovirus transduction of hMSCs using 3D hydrogel cell carriers. Mol. Biotechnol. 53, 207–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Sieker, J. T. et al. Direct bone morphogenetic protein 2 and indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthritis Cartilage http://dx.doi.org/10.1016/j.joca.2014.11.008.

  21. Ivkovic, A. et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther. 17, 779–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Evans, C. H. et al. Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur. Cell. Mater. 18, 96–111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang, R. et al. Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis Cartilage 5, 139–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Orth, P. et al. Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg. Sports Traumatol. Arthrosc. 19, 2119–2130 (2011).

    Article  PubMed  Google Scholar 

  25. Matsumoto, T. et al. Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1. Arthritis Rheum. 60, 1390–1405 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hidaka, C. et al. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J. Orthop. Res. 21, 573–583 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Goodrich, L. R., Hidaka, C., Robbins, P. D., Evans, C. H. & Nixon, A. J. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J. Bone Joint Surg. 89, 672–685 (2007).

    Article  CAS  Google Scholar 

  28. Brower-Toland, B. D. et al. Direct adenovirus-mediated insulin-like growth factor I gene transfer enhances transplant chondrocyte function. Hum. Gene Ther. 12, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Ortved, K. F. Begum, L., Mohammed, H. O. & Nixon, A. J. Implantation of rAAV5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model. Mol. Ther. http://dx.doi/org/10.1038/mt.2014.198.

  30. Ha, C. W., Noh, M. J., Choi, K. B. & Lee, K. H. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-β-1 in degenerative arthritis patients. Cytotherapy 14, 247–256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  32. Wehling, N. et al. Interleukin-1β and tumor necrosis factor α inhibit chondrogenesis by human mesenchymal stem cells through NF-κB-dependent pathways. Arthritis Rheum. 60, 801–812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glass, K. A. et al. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials 35, 5921–5931 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rachakonda, P. S., Rai, M. F. & Schmidt, M. F. Application of inflammation-responsive promoter for an in vitro arthritis model. Arthritis Rheum. 58, 2088–2097 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Haupt, J. L. et al. Dual transduction of insulin-like growth factor-I and interleukin-1 receptor antagonist protein controls cartilage degradation in an osteoarthritic culture model. J. Orthop. Res. 23, 118–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Neumann, E. et al. Inhibition of cartilage destruction by double gene transfer of IL-1Ra and IL-10 involves the activin pathway. Gene Ther. 9, 1508–1519 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Watson, R. S. et al. scAAV-mediated gene transfer of interleukin-1-receptor antagonist to synovium and articular cartilage in large mammalian joints. Gene Ther. 20, 670–677 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. US National Library of Medicine. ClinicalTrials.gov [online], (2010).

  39. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  40. US National Library of Medicine. ClinicalTrials.gov [online], (2015).

  41. Evans, C. H. Gouze, J. N., Gouze, E., Robbins, P. D. & Ghivizzani, S. C. Osteoarthritis gene therapy. Gene Ther. 11, 379–389 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Evans, C. H. Ghivizzani, S. C. & Robbins, P. D. Arthritis gene therapy and its tortuous path into the clinic. Transl. Res. 161, 205–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pagnotto, M. R. et al. Adeno-associated viral gene transfer of transforming growth factor-β1 to human mesenchymal stem cells improves cartilage repair. Gene Ther. 14, 804–813 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Gelse, K. et al. Cell-based resurfacing of large cartilage defects: long-term evaluation of grafts from autologous transgene-activated periosteal cells in a porcine model of osteoarthritis. Arthritis Rheum. 58, 475–488 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Needham, C. J. et al. Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater. 10, 4103–4112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brunger, J. M. et al. Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc. Natl Acad. Sci. USA 111, E798–E806 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pi, Y. et al. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display. Biomaterials 32, 6324–6332 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Saraf, A. & Mikos, A. G. Gene delivery strategies for cartilage tissue engineering. Adv. Drug Deliv. Rev. 58, 592–603 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Betz, O. B. et al. Direct percutaneous gene delivery to enhance healing of segmental bone defects. J. Bone Joint Surg. Am. 88, 355–365 (2006).

    Article  PubMed  Google Scholar 

  50. Wright, V. et al. BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Mol. Ther. 6, 169–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, F., Zhang C. Q., Chai, Y. M. & Li, X. L. Lentivirus-mediated Wnt10b overexpression enhances fracture healing in a rat atrophic non-union model. Biotechnol. Lett. http://dx.doi.org/10.1007/s10529-014-1703-2.

  52. Li, R., Stewart, D. J., von Schroeder, H. P., Mackinnon, E. S. & Schemitsch, E. H. Effect of cell-based VEGF gene therapy on healing of a segmental bone defect. J. Orthop. Res. 27, 8–14 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Han, D. & Li, J. Repair of bone defect by using vascular bundle implantation combined with Runx II gene-transfected adipose-derived stem cells and a biodegradable matrix. Cell Tissue Res. 352, 561–571 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Lattanzi, W. et al. Ex vivo-transduced autologous skin fibroblasts expressing human Lim mineralization protein-3 efficiently form new bone in animal models. Gene Ther. 15, 1330–1343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rundle, C. H. et al. Retroviral-based gene therapy with cyclooxygenase-2 promotes the union of bony callus tissues and accelerates fracture healing in the rat. J. Gene Med. 10, 229–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Li, Y. et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials 34, 5048–5058 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Scotti, C. et al. Engineering of a functional bone organ through endochondral ossification. Proc. Natl Acad. Sci. USA 110, 3997–4002 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Peng, H. et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J. Clin. Invest. 110, 751–759 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gates, C. B., Karthikeyan, T., Fu, F. & Huard, J. Regenerative medicine for the musculoskeletal system based on muscle-derived stem cells. J. Am. Acad. Orthop. Surg. 16, 68–76 (2008).

    Article  PubMed  Google Scholar 

  60. Evans, C. Gene therapy for the regeneration of bone. Injury 42, 599–604 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhu, L., Chuanchang, D., Wei, L., Yilin, C. & Jiasheng, D. Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J. Orthop. Res. 28, 412–418 (2010).

    PubMed  Google Scholar 

  62. Chang, S. C. et al. Large-scale bicortical skull bone regeneration using ex vivo replication-defective adenoviral-mediated bone morphogenetic protein-2 gene-transferred bone marrow stromal cells and composite biomaterials. Neurosurgery 65, 75–81 (2009).

    Article  PubMed  Google Scholar 

  63. Ishihara, A., Zekas, L. J., Litsky, A. S., Weisbrode, S. E. & Bertone, A.L. Dermal fibroblast-mediated BMP2 therapy to accelerate bone healing in an equine osteotomy model. J. Orthop. Res. 28, 403–411 (2010).

    PubMed  Google Scholar 

  64. Baltzer, A. W. A. et al. Potential role of direct adenoviral gene transfer in enhancing facture repair. Clin. Orthop. Relat. Res. 379 (Suppl.) S120–S125 (2000).

    Article  Google Scholar 

  65. Bertone, A. L. et al. Adenoviral-mediated transfer of human BMP-6 gene accelerates healing in a rabbit ulnar osteotomy model. J. Orthop. Res. 22, 1261–1270 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Baltzer, A. W. et al. A gene therapy approach to accelerating bone healing. Evaluation of gene expression in a New Zealand white rabbit model. Knee Surg. Sports Traumatol. Arthrosc. 7, 197–202 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Betz, V. M. et al. Healing of segmental bone defects by direct percutaneous gene delivery: effect of vector dose. Hum. Gene Ther. 18, 907–915 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Egermann, M. et al. Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther. 13, 1290–1299 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Egermann, M. et al. Direct adenoviral transfer of bone morphogenetic protein-2 cDNA enhances fracture healing in osteoporotic sheep. Hum. Gene Ther. 17, 507–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Southwood, L. L. et al. Evaluation of direct in vivo gene transfer in an equine metacarpal IV ostectomy model using an adenoviral vector encoding the bone morphogenetic protein-2 and protein-7 gene. Vet. Surg. 41, 345–354 (2012).

    PubMed  Google Scholar 

  71. Menendez, M. I. et al. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis Cartilage 19, 1066–1075 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Virk, M. S. et al. “Same day” ex-vivo regional gene therapy: a novel strategy to enhance bone repair. Mol. Ther. 19, 960–968 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Virk, M. S. et al. Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone 42, 921–931 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Alaee, F. et al. Suicide gene approach using a dual-expression lentiviral vector to enhance the safety of ex vivo gene therapy for bone repair. Gene Ther. 21, 139–147 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Tsuchida, H., Hashimoto, J., Crawford, E., Manske, P. & Lou, J. Engineered allogeneic mesenchymal stem cells repair femoral segmental defect in rats. J. Orthop. Res. 21, 44–53 (2003).

    Article  PubMed  Google Scholar 

  76. Sonnet, C. et al. Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J. Orthop. Res. 31, 1597–1604 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Fang, J. et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl Acad. Sci. USA 93, 5753–5758 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tierney, E. G., Duffy, G. P., Hibbitts, A. J., Cryan, S. A. & O'Brien, F. J. The development of non-viral gene-activated matrices for bone regeneration using polyethyleneimine (PEI) and collagen-based scaffolds. J. Control. Release 158, 304–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Dupont, K. M. et al. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res. 347, 575–588 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Wegman, F., Oner, F. C., Dhert, W. J. & Alblas, J. Non-viral gene therapy for bone tissue engineering. Biotechnol. Genet. Eng. Rev. 29, 206–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Ito, H. et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat. Med. 11, 291–297 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yazici, C. et al. Self-complementary AAV2.5-BMP2-coated femoral allografts mediated superior bone healing versus live autografts in mice with equivalent biomechanics to unfractured femur. Mol. Ther. 19, 1416–1425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koefoed, M. et al. Biological effects of rAAV-caAlk2 coating on structural allograft healing. Mol. Ther. 12, 212–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Gharaibeh, B. et al. Biological approaches to improve skeletal muscle healing after injury and disease. Birth Defects Res. C Embryo. Today 96, 82–94 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kasemkijwattana, C. et al. Development of approaches to improve the healing following muscle contusion. Cell Transplant. 7, 585–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Schertzer, J. D. & Lynch, G. S. Comparative evaluation of IGF-I gene transfer and IGF-I protein administration for enhancing skeletal muscle regeneration after injury. Gene Ther. 13, 1657–1664 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Li, Y. et al. Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol. Ther. 15, 1616–1622 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Zhu, J. et al. Relationships between transforming growth factor-β1, myostatin, and decorin: implications for skeletal muscle fibrosis. J. Biol. Chem. 282, 25852–25863 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Fukushima, K. et al. The use of an antifibrosis agent to improve muscle recovery after laceration. Am. J. Sports Med. 29, 394–402 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Nozaki, M. et al. Improved muscle healing after contusion injury by the inhibitory effect of suramin on myostatin, a negative regulator of muscle growth. Am. J. Sports Med. 36, 2354–2362 (2008).

    Article  PubMed  Google Scholar 

  91. Foster, W., Li, Y., Usas, A., Somogyi, G. & Huard, J. Gamma interferon as an antifibrosis agent in skeletal muscle. J. Orthop. Res. 21, 798–804 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Li, Y., Negishi, S., Sakamoto, M., Usas, A. & Huard, J. The use of relaxin improves healing in injured muscle. Ann. NY Acad. Sci. 1041, 395–397 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Terada, S. et al. Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J. Bone Joint Surg. Am. 95, 980–988 (2013).

    Article  PubMed  Google Scholar 

  94. Kobayashi, T. et al. The timing of administration of a clinically relevant dose of losartan influences the healing process after contusion induced muscle injury. J. Appl. Physiol (1985) 114, 262–273 (2013).

    Article  CAS  Google Scholar 

  95. Bedair, H. S., Karthikeyan, T., Quintero, A., Li, Y. & Huard, J. Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am. J. Sports Med. 36, 1548–1554 (2008).

    Article  PubMed  Google Scholar 

  96. Deasy, B. M. et al. Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol. Ther. 17, 1788–1798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhou, W. et al. Angiogenic gene-modified myoblasts promote vascularization during repair of skeletal muscle defects. J. Tissue Eng. Regen. Med. http://dx.doi.org/10.1002/term.1692.

  98. Goudenege, S. et al. Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol. Ther. 17, 1064–1072 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Docheva, D., Müller, S. A., Majewski, M. & Evans, C. H. Biologics for tendon repair. Adv. Drug Deliv. http://dx.doi.org/10.1016/j.addr.2014.11.015.

  100. Lou, J. Tu, Y., Burns, M., Silva, M. J. & Manske, P. BMP-12 gene transfer augmentation of lacerated tendon repair. J. Orthop. Res. 19, 1199–1202 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Majewski, M. et al. Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model. Gene Ther. 15, 1139–1146 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Basile, P. et al. Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery. Mol. Ther. 16, 466–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Rickert, M. BMP-14 gene therapy increases tendon tensile strength in a rat model of achilles tendon injury. J. Bone Joint Surg. Am. 90, 445; author reply 445–446 (2008).

    PubMed  Google Scholar 

  104. Gulotta, L. V., Kovacevic, D., Packer, J. D., Ehteshami, J. R. & Rodeo, S. A. Adenoviral-mediated gene transfer of human bone morphogenetic protein-13 does not improve rotator cuff healing in a rat model. Am. J. Sports Med. 39, 180–187 (2011).

    Article  PubMed  Google Scholar 

  105. Wolfman, N. M. et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J. Clin. Invest. 100, 321–330 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Haddad-Weber, M. et al. BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells. Cytotherapy 12, 505–513 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eliasson, P., Fahlgren, A. & Aspenberg, P. Mechanical load and BMP signaling during tendon repair: a role for follistatin? Clin. Orthop. Relat. Res. 466, 1592–1597 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Alberton, P. et al. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev. 21, 846–858 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Gulotta, L. V., Kovacevic, D., Packer, J. D., Deng, X. H. & Rodeo, S. A. Bone marrow-derived mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. Am. J. Sports Med. 39, 1282–1289 (2011).

    Article  PubMed  Google Scholar 

  110. Hoffmann, A. et al. Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells. J. Clin. Invest. 116, 940–952 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tang, J. B. et al. Adeno-associated virus-2-mediated bFGF gene transfer to digital flexor tendons significantly increases healing strength. J. Bone Joint Surg. Am. 90, 1078–1089 (2008).

    Article  PubMed  Google Scholar 

  112. Hou, Y. et al. Effects of transforming growth factor-β1 and vascular endothelial growth factor 165 gene transfer on Achilles tendon healing. Matrix Biol. 28, 324–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Nakamura, N. et al. Early biological effect of in vivo gene transfer of platelet-derived growth factor (PDGF)-B into healing patellar ligament. Gene Ther. 5, 1165–1170 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Schnabel, L. V. et al. Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J. Orthop. Res. 27, 1392–1398 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Coen, M. J., Chen, S. T., Rundle, C. H., Wergedal, J. E. & Lau, K. H. Lentiviral-based BMP4 in vivo gene transfer strategy increases pull-out tensile strength without an improvement in the osteointegration of the tendon graft in a rat model of biceps tenodesis. J. Gene Med. 13, 511–521 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Martinek, V. et al. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J. Bone Joint Surg. Am. 84, 1123–1131 (2002).

    Article  PubMed  Google Scholar 

  117. Lattermann, C. et al. Gene transfer to the tendon-bone insertion site. Knee Surg. Sports Traumatol. Arthrosc. 12, 510–515 (2004).

    Article  PubMed  Google Scholar 

  118. Ricchetti, E. T. et al. Effect of interleukin-10 overexpression on the properties of healing tendon in a murine patellar tendon model. J. Hand Surg. Am. 33, 1843–1852 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lin, L. et al. Adenovirus-mediated transfer of siRNA against Runx2/Cbfa1 inhibits the formation of heterotopic ossification in animal model. Biochem Biophys. Res. Commun. 349, 564–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Xue, T. et al. Non-virus-mediated transfer of siRNAs against Runx2 and Smad4 inhibit heterotopic ossification in rats. Gene Ther. 17, 370–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Evans, C. Potential biologic therapies for the intervertebral disc. J. Bone Joint Surg. Am. 88 (Suppl. 2) 95–98 (2006).

    PubMed  Google Scholar 

  122. Nishida, K., Gilbertson, L. G., Robbins, P. D., Evans, C. H. & Kang, J. D. Potential applications of gene therapy to the treatment of intervertebral disc disorders. Clin. Orthop. Relat. Res. 379, (Suppl.) S234–S241 (2000).

    Article  Google Scholar 

  123. Woods, B. I., Vo, N., Sowa, G. & Kang, J. D. Gene therapy for intervertebral disk degeneration. Orthop. Clin. North Am. 42, 563–574 (2011).

    Article  PubMed  Google Scholar 

  124. Goto, H. et al. Transfer of lacZ marker gene to the meniscus. J. Bone Joint Surg. Am. 81, 918–925 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Cucchiarini, M., Schetting, S., Terwilliger, E. F., Kohn, D. & Madry, H. rAAV-mediated overexpression of FGF-2 promotes cell proliferation, survival, and α-SMA expression in human meniscal lesions. Gene Ther. 16, 1363–1372 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Steinert, A. F. et al. Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-β 1 complementary deoxyribonucleic acid. Tissue Eng. 13, 2227–2237 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, H. P., Kaul, G., Cucchiarini, M. & Madry, H. Nonviral gene transfer to human meniscal cells. Part I: transfection analyses and cell transplantation to meniscus explants. Int. Orthop. 38, 1923–1930 (2014).

    Article  PubMed  Google Scholar 

  128. Zhang, H., Leng, P. & Zhang, J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin. Orthop. Relat. Res. 467, 3165–3174 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Betz, O. B. et al. Delayed administration of adenoviral BMP-2 vector improves the formation of bone in osseous defects. Gene Ther. 14, 1039–1044 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Calcedo, R. & Wilson, J. M. Humoral immune response to AAV. Front. Immunol. 4, 341 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Orthopedic gene therapy—lost in translation? J. Cell. Physiol. 227, 416–420 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Madry, H. et al. Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols. Eur. Cell. Mater. 27, 17–21 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work in this area has been supported by the AO Foundation and by NIH grants R01 AR050243, R01 AR052809, R01 AR43623, R21 AR049606, R01 AR048566, R01 AR057422 and R01 AR051085 from National Institute for Arthritis and Musculoskeletal Skin Diseases, 1P01AG043376-01A1 from National Institute on Aging, X01 NS066865 from National Center for Advancing Translation Sciences, and W81XWH-13-2-0052 from the Department of Defense (the Armed Forces Institute of Regenerative Medicine II).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching data for the article, discussing the content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Christopher H. Evans.

Ethics declarations

Competing interests

C.H.E. declares that he is a co-inventor on patents pertaining to the subject matter of this Review, and that he is a scientific advisory board member for TissueGene, Inc. J.H. declares that he receives remuneration as a consultant and royalties from Cook Myosite, Inc.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, C., Huard, J. Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol 11, 234–242 (2015). https://doi.org/10.1038/nrrheum.2015.28

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2015.28

  • Springer Nature Limited

This article is cited by

Navigation