Skip to main content
Log in

Pathogenomics

  • Genome Watch
  • Published:

From Nature Reviews Microbiology

View current issue Sign up to alerts

Abstract

Caterpillars infected with nematodes carrying symbiotic Photorhabdus luminescens. These caterpillars 'glow' as a result of the intrinsic bioluminesence of P. luminescens. Image kindly provided by Richard ffrench-Constant.

The genomes described this month reflect the overall historical bias of microbial genomics towards pathogenic bacteria. Although the balance is now being redressed to some extent, especially through the study of extremophiles, it is still the case that the opportunities provided by genomic studies are primarily taken up by those who study bacterial pathogenicity. This part of the field is, however, being broadened by including the study of pathogens of animals, insects and plants alongside those that afflict humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Cerdeño-Tárraga, A. M. et al. The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res. (doi: 10.1093/nar/gkg874).

  2. Daubin, V. & Perriere, G. G+C3 structuring along the genome: a common feature in prokaryotes. Mol. Biol. Evol. 20, 471–483 (2003).

    Article  CAS  Google Scholar 

  3. Bentley, S.D. et al. Sequencing and analysis of the genome of the Whipple's disease bacterium Tropheryma whipplei. Lancet 361, 637–644 (2003).

    Article  CAS  Google Scholar 

  4. Raoult, D. et al. Tropheryma whipplei Twist: a human pathogenic Actinobacteria with a reduced genome. Genome Res. 13, 1800–1809 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Renesto, P. et al. Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362, 447–449 (2003).

    Article  Google Scholar 

  6. Duchaud, E. et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. doi:10.1038/nbt886 (2003).

  7. Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001).

    Article  CAS  Google Scholar 

  8. Baar, C. et al. Complete genome sequence and analysis of Wolinella succinogenes. Proc. Natl Acad. Sci. USA 100, 11690–11695 (2003).

    Article  CAS  Google Scholar 

  9. Parkhill, J. et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668 (2000).

    Article  CAS  Google Scholar 

  10. Alm, R.A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).

    Article  Google Scholar 

  11. Tomb, J.F. et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547 (1997).

    Article  CAS  Google Scholar 

  12. Fredricks, D.N. & Relman, D.A. Localization of Tropheryma whippelii rRNA in tissues from patients with Whipple's disease. J. Infect. Dis. 183, 1229–1237 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crossman, L., Cerdeño-Tárraga, A., Bentley, S. et al. Pathogenomics. Nat Rev Microbiol 1, 176–177 (2003). https://doi.org/10.1038/nrmicro778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro778

  • Springer Nature Limited

Navigation