Key Points
-
The non-random distribution of transposable elements (TEs) in eukaryotic genomes is the consequence of both TE integration site preferences and post-integration selection processes.
-
Next-generation sequencing approaches and experimentally induced de novo TE mobilization are pivotal for investigating the mechanisms of TE integration site preference.
-
Chromatin structure and spatial organization in the nucleus contribute to the efficiency and/or selectivity of TE integration.
-
Mobilization machineries are often tethered to specific chromatin states by a variety of host factors that determine the favoured insertion sites.
-
Target site preference is part of TE–host co-adaptation strategies that lead to TE repression or reactivation, which potentially results in rapid host adaptation or pathogenicity.
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host–parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Similar content being viewed by others
References
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016). This study experimentally demonstrates the importance of retroelements in rewiring a gene network crucial for innate immunity and antiviral defence during mammalian evolution.
Goodier, J. L. Retrotransposition in tumors and brains. Mob. DNA 5, 11 (2014).
Brodeur, G. M., Sandmeyer, S. B. & Olson, M. V. Consistent association between sigma elements and tRNA genes in yeast. Proc. Natl Acad. Sci. USA 80, 3292–3296 (1983).
Burke, W. D., Calalang, C. C. & Eickbush, T. H. The site-specific ribosomal insertion element type II of Bombyx mori (R2Bm) contains the coding sequence for a reverse transcriptase-like enzyme. Mol. Cell. Biol. 7, 2221–2230 (1987).
Xiong, Y. & Eickbush, T. H. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol. Cell. Biol. 8, 114–123 (1988).
Schröder, A. R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).
Bushman, F. et al. Genome-wide analysis of retroviral DNA integration. Nat. Rev. Microbiol. 3, 848–858 (2005).
Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).
Campos-Sánchez, R., Kapusta, A., Feschotte, C., Chiaromonte, F. & Makova, K. D. Genomic landscape of human, bat, and ex vivo DNA transposon integrations. Mol. Biol. Evol. 31, 1816–1832 (2014).
Quadrana, L. et al. The Arabidopsis thaliana mobilome and its impact at the species level. eLife 5, e15716 (2016). This work offers a population-scale and genome-wide analysis of TE distribution in A. thaliana genomes and shows how TE distribution affects adaptive responses to climate.
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Wagstaff, B. J. et al. Rescuing Alu: recovery of new inserts shows LINE-1 preserves Alu activity through A-tail expansion. PLoS Genet. 8, e1002842 (2012).
Brady, T. et al. Integration target site selection by a resurrected human endogenous retrovirus. Genes Dev. 23, 633–642 (2009).
Heidmann, T., Heidmann, O. & Nicolas, J. F. An indicator gene to demonstrate intracellular transposition of defective retroviruses. Proc. Natl Acad. Sci. USA 85, 2219–2223 (1988).
Baller, J. A., Gao, J., Stamenova, R., Curcio, M. J. & Voytas, D. F. A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res. 22, 704–713 (2012).
Mularoni, L. et al. Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots. Genome Res. 22, 693–703 (2012).
de Jong, J., Wessels, L. F. A., van Lohuizen, M., de Ridder, J. & Akhtar, W. Applications of DNA integrating elements: facing the bias bully. Mob. Genet. Elements 4, 1–6 (2014).
Li, X. et al. A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture. Proc. Natl Acad. Sci. USA 110, E478–E487 (2013).
Ji, H. et al. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73, 1007–1018 (1993).
Gilbert, N., Lutz, S. & Moran, J. V. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25, 7780–7795 (2005).
Mitchell, R. S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234 (2004).
Chatterjee, A. G. et al. Serial number tagging reveals a prominent sequence preference of retrotransposon integration. Nucleic Acids Res. 42, 8449–8460 (2014).
Hickey, A. et al. Single-nucleotide-specific targeting of the Tf1 retrotransposon promoted by the DNA-binding protein Sap1 of Schizosaccharomyces pombe. Genetics 201, 905–924 (2015).
Philippe, C. et al. Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci. eLife 5, e13926 (2016).
Berry, C. C. et al. Estimating abundances of retroviral insertion sites from DNA fragment length data. Bioinformatics 28, 755–762 (2012).
Hacein-Bey-Abina, S. et al. A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N. Engl. J. Med. 371, 1407–1417 (2014).
Maldarelli, F. et al. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).
Cherry, J. M. et al. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res. 40, D700–D705 (2012).
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
Baller, J. A., Gao, J. & Voytas, D. F. Access to DNA establishes a secondary target site bias for the yeast retrotransposon Ty5. Proc. Natl Acad. Sci. USA 108, 20351–20356 (2011).
Ciuffi, A. et al. Methods for integration site distribution analyses in animal cell genomes. Methods 47, 261–268 (2009).
Gogol-Döring, A. et al. Genome-wide profiling reveals remarkable parallels between insertion site selection properties of the MLV retrovirus and the piggyBac transposon in primary human CD4+ T cells. Mol. Ther. 24, 592–606 (2016).
Fungtammasan, A., Walsh, E., Chiaromonte, F., Eckert, K. A. & Makova, K. D. A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome? Genome Res. 22, 993–1005 (2012).
Devine, S. E. & Boeke, J. D. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10, 620–633 (1996).
Gangadharan, S., Mularoni, L., Fain-Thornton, J., Wheelan, S. J. & Craig, N. L. DNA transposon Hermes inserts into DNA in nucleosome-free regions in vivo. Proc. Natl Acad. Sci. USA 107, 21966–21972 (2010).
Ciuffi, A. et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289 (2005). This study demonstrates the role of the transcriptional coactivator LEDGF in directing HIV integration into actively transcribed genes by simultaneously binding the viral integrase and host chromatin.
Bridier-Nahmias, A. et al. Retrotransposons. An RNA polymerase III subunit determines sites of retrotransposon integration. Science 348, 585–588 (2015). This study solves the long-standing mystery of how the yeast Ty1 element targets Pol III-transcribed genes.
Jacobs, J. Z. et al. Arrested replication forks guide retrotransposon integration. Science 349, 1549–1553 (2015). References 23 and 38 show that an interaction between the Tf1 integrase and the host protein Sap1, which is involved in replication fork arrest, contributes to the efficiency and the selectivity of Tf1 integration near arrested replication forks and upstream of the promoters of Pol II-transcribed genes.
Feng, Q., Moran, J. V., Kazazian, H. H. & Boeke, J. D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).
Yang, J., Malik, H. S. & Eickbush, T. H. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl Acad. Sci. USA 96, 7847–7852 (1999).
Christensen, S. M., Bibillo, A. & Eickbush, T. H. Role of the Bombyx mori R2 element N-terminal domain in the target-primed reverse transcription (TPRT) reaction. Nucleic Acids Res. 33, 6461–6468 (2005).
Thompson, B. K. & Christensen, S. M. Independently derived targeting of 28S rDNA by A- and D-clade R2 retrotransposons: plasticity of integration mechanism. Mob. Genet. Elements 1, 29–37 (2011).
Shivram, H., Cawley, D. & Christensen, S. M. Targeting novel sites: the N-terminal DNA binding domain of non-LTR retrotransposons is an adaptable module that is implicated in changing site specificities. Mob. Genet. Elements 1, 169–178 (2011).
Takahashi, H. & Fujiwara, H. Transplantation of target site specificity by swapping the endonuclease domains of two LINEs. EMBO J. 21, 408–417 (2002).
Yoshitake, K. & Fujiwara, H. Creation of a novel telomere-cutting endonuclease based on the EN domain of telomere-specific non-long terminal repeat retrotransposon, TRAS1. Mob. DNA 1, 13 (2010).
Osanai-Futahashi, M. & Fujiwara, H. Coevolution of telomeric repeats and telomeric repeat-specific non-LTR retrotransposons in insects. Mol. Biol. Evol. 28, 2983–2986 (2011).
Weichenrieder, O., Repanas, K. & Perrakis, A. Crystal structure of the targeting endonuclease of the human LINE-1 retrotransposon. Structure 12, 975–986 (2004).
Maita, N., Anzai, T., Aoyagi, H., Mizuno, H. & Fujiwara, H. Crystal structure of the endonuclease domain encoded by the telomere-specific long interspersed nuclear element, TRAS1. J. Biol. Chem. 279, 41067–41076 (2004).
Maita, N., Aoyagi, H., Osanai, M., Shirakawa, M. & Fujiwara, H. Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies. Nucleic Acids Res. 35, 3918–3927 (2007).
Repanas, K. et al. Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease. Nucleic Acids Res. 35, 4914–4926 (2007).
Fujiwara, H. Site-specific non-LTR retrotransposons. Microbiol. Spectr. 3, MDNA3-0001-201414 (2015).
Monot, C. et al. The specificity and flexibility of L1 reverse transcription priming at imperfect T-tracts. PLoS Genet. 9, e1003499 (2013).
Viollet, S., Monot, C. & Cristofari, G. L1 retrotransposition: the snap-velcro model and its consequences. Mob. Genet. Elements 4, e28907 (2014).
Anzai, T., Osanai, M., Hamada, M. & Fujiwara, H. Functional roles of 3′-terminal structures of template RNA during in vivo retrotransposition of non-LTR retrotransposon, R1Bm. Nucleic Acids Res. 33, 1993–2002 (2005).
Hickman, A. B. & Dyda, F. DNA transposition at work. Chem. Rev. 116, 12758–12784 (2016).
Fraser, M. J., Brusca, J. S., Smith, G. E. & Summers, M. D. Transposon-mediated mutagenesis of a baculovirus. Virology 145, 356–361 (1985).
Ivics, Z., Hackett, P. B. & Izsvák, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).
Vigdal, T. J., Kaufman, C. D., Izsvák, Z., Voytas, D. F. & Ivics, Z. Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements. J. Mol. Biol. 323, 441–452 (2002).
Serrao, E., Ballandras-Colas, A., Cherepanov, P., Maertens, G. N. & Engelman, A. N. Key determinants of target DNA recognition by retroviral intasomes. Retrovirology 12, 39 (2015).
Maertens, G. N., Hare, S. & Cherepanov, P. The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468, 326–329 (2010).
Morris, E. R., Grey, H., McKenzie, G., Jones, A. C. & Richardson, J. M. A bend, flip and trap mechanism for transposon integration. eLife 5, e15537 (2016).
Serrao, E. et al. Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res. 42, 5164–5176 (2014).
Aiyer, S. et al. Structural and sequencing analysis of local target DNA recognition by MLV integrase. Nucleic Acids Res. 43, 5647–5663 (2015).
Faye, B. et al. Functional characteristics of a highly specific integrase encoded by an LTR-retrotransposon. PLoS ONE 3, e3185 (2008).
Liao, G. C., Rehm, E. J. & Rubin, G. M. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97, 3347–3351 (2000).
Holman, A. G. & Coffin, J. M. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc. Natl Acad. Sci. USA 102, 6103–6107 (2002).
Linheiro, R. S. & Bergman, C. M. Testing the palindromic target site model for DNA transposon insertion using the Drosophila melanogaster P-element. Nucleic Acids Res. 36, 6199–6208 (2008).
Linheiro, R. S. & Bergman, C. M. Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLoS ONE 7, e30008 (2012).
Wang, G. P., Ciuffi, A., Leipzig, J., Berry, C. C. & Bushman, F. D. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 17, 1186–1194 (2007).
Maskell, D. P. et al. Structural basis for retroviral integration into nucleosomes. Nature 523, 366–369 (2015). This is the first study to solve the crystallographic structure of a retroviral integration complex bound to a nucleosome.
Yin, Z. et al. Crystal structure of the Rous sarcoma virus intasome. Nature 530, 362–366 (2016).
Ballandras-Colas, A. et al. Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 530, 358–361 (2016).
Kirk, P. D., Huvet, M., Melamed, A., Maertens, G. N. & Bangham, C. R. Retroviruses integrate into a shared, non-palindromic DNA motif. Nat. Microbiol. 2, 16212 (2016).
Voigt, F. et al. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering. Nat. Commun. 7, 11126 (2016).
Pryciak, P. M. & Varmus, H. E. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69, 769–780 (1992).
Pruss, D., Bushman, F. D. & Wolffe, A. P. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc. Natl Acad. Sci. USA 91, 5913–5917 (1994).
Benleulmi, M. S. et al. Intasome architecture and chromatin density modulate retroviral integration into nucleosome. Retrovirology 12, 13 (2015).
Pasi, M. et al. DNA minicircles clarify the specific role of DNA structure on retroviral integration. Nucleic Acids Res. 44, 7830–7847 (2016).
Liu, S. et al. Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genet. 5, e1000733 (2009).
Naito, K. et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461, 1130–1134 (2009).
Guo, Y. & Levin, H. L. High-throughput sequencing of retrotransposon integration provides a saturated profile of target activity in Schizosaccharomyces pombe. Genome Res. 20, 239–248 (2010).
Lesbats, P. et al. Functional coupling between HIV-1 integrase and the SWI/SNF chromatin remodeling complex for efficient in vitro integration into stable nucleosomes. PLoS Pathog. 7, e1001280 (2011).
Naughtin, M. et al. DNA physical properties and nucleosome positions are major determinants of HIV-1 integrase selectivity. PLoS ONE 10, e0129427 (2015).
Bachman, N., Eby, Y. & Boeke, J. D. Local definition of Ty1 target preference by long terminal repeats and clustered tRNA genes. Genome Res. 14, 1232–1247 (2004).
Taganov, K. D. et al. Integrase-specific enhancement and suppression of retroviral DNA integration by compacted chromatin structure in vitro. J. Virol. 78, 5848–5855 (2004).
Gelbart, M. E., Bachman, N., Delrow, J., Boeke, J. D. & Tsukiyama, T. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev. 19, 942–954 (2005).
Dang, V. D. & Levin, H. L. Nuclear import of the retrotransposon Tf1 is governed by a nuclear localization signal that possesses a unique requirement for the FXFG nuclear pore factor Nup124p. Mol. Cell. Biol. 20, 7798–7812 (2000).
Lin, S. S., Nymark-McMahon, M. H., Yieh, L. & Sandmeyer, S. B. Integrase mediates nuclear localization of Ty3. Mol. Cell. Biol. 21, 7826–7838 (2001).
Katz, R. A. et al. Transduction of interphase cells by avian sarcoma virus. J. Virol. 76, 5422–5434 (2002).
McLane, L. M., Pulliam, K. F., Devine, S. E. & Corbett, A. H. The Ty1 integrase protein can exploit the classical nuclear protein import machinery for entry into the nucleus. Nucleic Acids Res. 36, 4317–4326 (2008).
Andrake, M. D. et al. Nuclear import of avian sarcoma virus integrase is facilitated by host cell factors. Retrovirology 5, 73 (2008).
Levin, A., Loyter, A. & Bukrinsky, M. Strategies to inhibit viral protein nuclear import: HIV-1 as a target. Biochim. Biophys. Acta 1813, 1646–1653 (2011).
Lewinski, M. K. et al. Retroviral DNA integration: viral and cellular determinants of target-site selection. PLoS Pathog. 2, e60 (2006).
Schaller, T. et al. HIV-1 capsid–cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog. 7, e1002439 (2011).
Koh, Y. et al. Differential effects of human immunodeficiency virus type 1 capsid and cellular factors nucleoporin 153 and LEDGF/p75 on the efficiency and specificity of viral DNA integration. J. Virol. 87, 648–658 (2013).
Sowd, G. A. et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc. Natl Acad. Sci. USA 113, E1054–E1063 (2016).
Varadarajan, P. et al. The functionally conserved nucleoporins Nup124p from fission yeast and the human Nup153 mediate nuclear import and activity of the Tf1 retrotransposon and HIV-1 Vpr. Mol. Biol. Cell 16, 1823–1838 (2005).
Irwin, B. et al. Retroviruses and yeast retrotransposons use overlapping sets of host genes. Genome Res. 15, 641–654 (2005).
Curcio, M. J., Lutz, S. & Lesage, P. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae. Microbiol. Spectr. 3, MDNA3-0053-2014 (2015).
Beliakova-Bethell, N. et al. Ty3 nuclear entry is initiated by viruslike particle docking on GLFG nucleoporins. J. Virol. 83, 11914–11925 (2009).
Albanese, A., Arosio, D., Terreni, M. & Cereseto, A. HIV-1 pre-integration complexes selectively target decondensed chromatin in the nuclear periphery. PLoS ONE 3, e2413 (2008).
Di Primio, C. et al. Single-cell imaging of HIV-1 provirus (SCIP). Proc. Natl Acad. Sci. USA 110, 5636–5641 (2013).
Burdick, R. C., Hu, W. S. & Pathak, V. K. Nuclear import of APOBEC3F-labeled HIV-1 preintegration complexes. Proc. Natl Acad. Sci. USA 110, E4780–E4789 (2013).
Marini, B. et al. Nuclear architecture dictates HIV-1 integration site selection. Nature 521, 227–231 (2015).
Vaquerizas, J. M. et al. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846 (2010).
Lelek, M. et al. Chromatin organization at the nuclear pore favours HIV replication. Nat. Commun. 6, 6483 (2015). References 104 and 106 show that HIV preferentially integrates into actively transcribed genes located near the NPC and demonstrate the contribution of the nucleoporin TPR in this process.
Sandmeyer, S. B., Hansen, L. J. & Chalker, D. L. Integration specificity of retrotransposons and retroviruses. Annu. Rev. Genet. 24, 491–518 (1990).
Zou, S., Ke, N., Kim, J. M. & Voytas, D. F. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10, 634–645 (1996).
De Rijck, J., Bartholomeeusen, K., Ceulemans, H., Debyser, Z. & Gijsbers, R. High-resolution profiling of the LEDGF/p75 chromatin interaction in the ENCODE region. Nucleic Acids Res. 38, 6135–6147 (2010).
Qi, X. et al. Retrotransposon profiling of RNA polymerase III initiation sites. Genome Res. 22, 681–692 (2012).
De Rijck, J. et al. The BET family of proteins targets moloney murine leukemia virus integration near transcription start sites. Cell Rep. 5, 886–894 (2013).
Sharma, A. et al. BET proteins promote efficient murine leukemia virus integration at transcription start sites. Proc. Natl Acad. Sci. USA 110, 12036–12041 (2013).
Zhu, Y., Dai, J., Fuerst, P. G. & Voytas, D. F. Controlling integration specificity of a yeast retrotransposon. Proc. Natl Acad. Sci. USA 100, 5891–5895 (2003).
Ferris, A. L. et al. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc. Natl Acad. Sci. USA 107, 3135–3140 (2010).
Gijsbers, R. et al. LEDGF hybrids efficiently retarget lentiviral integration into heterochromatin. Mol. Ther. 18, 552–560 (2010).
Silvers, R. M. et al. Modification of integration site preferences of an HIV-1-based vector by expression of a novel synthetic protein. Hum. Gene Ther. 21, 337–349 (2010).
Gai, X. & Voytas, D. F. A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin. Mol. Cell 1, 1051–1055 (1998).
Xie, W. et al. Targeting of the yeast Ty5 retrotransposon to silent chromatin is mediated by interactions between integrase and Sir4p. Mol. Cell. Biol. 21, 6606–6614 (2001).
Kirchner, J., Connolly, C. M. & Sandmeyer, S. B. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267, 1488–1491 (1995).
Qi, X. & Sandmeyer, S. In vitro targeting of strand transfer by the Ty3 retroelement integrase. J. Biol. Chem. 287, 18589–18595 (2012).
Aye, M., Dildine, S. L., Claypool, J. A., Jourdain, S. & Sandmeyer, S. B. A truncation mutant of the 95-kilodalton subunit of transcription factor IIIC reveals asymmetry in Ty3 integration. Mol. Cell. Biol. 21, 7839–7851 (2001).
Cheung, S. et al. Ty1 integrase interacts with RNA polymerase III-specific subcomplexes to promote insertion of Ty1 elements upstream of polymerase (Pol) III-transcribed genes. J. Biol. Chem. 291, 6396–6411 (2016).
Gao, X., Hou, Y., Ebina, H., Levin, H. L. & Voytas, D. F. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 18, 359–369 (2008).
Cherepanov, P. et al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278, 372–381 (2003).
Llano, M. et al. An essential role for LEDGF/p75 in HIV integration. Science 314, 461–464 (2006).
Shun, M.-C. et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21, 1767–1778 (2007).
Engelman, A. & Cherepanov, P. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog. 4, e1000046 (2008).
Singh, P. K. et al. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes. Genes Dev. 29, 2287–2297 (2015). This study makes the important discovery that HIV integrase directs integration into highly spliced genes by interacting with splicing factors, thus highlighting the cooperation between multiple tethering factors.
Morchikh, M. et al. TOX4 and NOVA1 proteins are partners of the LEDGF PWWP domain and affect HIV-1 replication. PLoS ONE 8, e81217 (2013).
Eidahl, J. O. et al. Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res. 41, 3924–3936 (2013).
Gupta, S. S. et al. Bromo- and extraterminal domain chromatin regulators serve as cofactors for murine leukemia virus integration. J. Virol. 87, 12721–12736 (2013). References 111, 112 and 131 indicate that BET proteins interact with MLV integrase and mediate MLV integration at transcription start sites.
Larue, R. C. et al. Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes. Nucleic Acids Res. 42, 4868–4881 (2014).
De Ravin, S. S. et al. Enhancers are major targets for murine leukemia virus vector integration. J. Virol. 88, 4504–4513 (2014).
LaFave, M. C. et al. MLV integration site selection is driven by strong enhancers and active promoters. Nucleic Acids Res. 42, 4257–4269 (2014).
Tobaly-Tapiero, J. et al. Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 9, 1717–1727 (2008).
Hocum, J. D. et al. Retargeted foamy virus vectors integrate less frequently near proto-oncogenes. Sci. Rep. 6, 36610 (2016).
Elis, E., Ehrlich, M., Prizan-Ravid, A., Laham-Karam, N. & Bacharach, E. p12 tethers the murine leukemia virus pre-integration complex to mitotic chromosomes. PLoS Pathog. 8, e1003103 (2012).
Wight, D. J. et al. The gammaretroviral p12 protein has multiple domains that function during the early stages of replication. Retrovirology 9, 83 (2012).
Schneider, W. M. et al. Viral DNA tethering domains complement replication-defective mutations in the p12 protein of MuLV Gag. Proc. Natl Acad. Sci. USA 110, 9487–9492 (2013).
Rashkova, S., Karam, S. E., Kellum, R. & Pardue, M. L. Gag proteins of the two Drosophila telomeric retrotransposons are targeted to chromosome ends. J. Cell Biol. 159, 397–402 (2002).
Fuller, A. M., Cook, E. G. & Kelley, K. J. Gag proteins of Drosophila telomeric retrotransposons: collaborative targeting to chromosome ends. Genetics 184, 629–636 (2010).
Zhang, L., Beaucher, M., Cheng, Y. & Rong, Y. S. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila. EMBO J. 33, 1148–1158 (2014).
Matsumoto, T., Takahashi, H. & Fujiwara, H. Targeted nuclear import of open reading frame 1 protein is required for in vivo retrotransposition of a telomere-specific non-long terminal repeat retrotransposon, SART1. Mol. Cell. Biol. 24, 105–122 (2004).
Chung, T., Siol, O., Dingermann, T. & Winckler, T. Protein interactions involved in tRNA gene-specific integration of Dictyostelium discoideum non-long terminal repeat retrotransposon TRE5-A. Mol. Cell. Biol. 27, 8492–8501 (2007).
Siol, O. et al. Role of RNA polymerase III transcription factors in the selection of integration sites by the Dictyostelium non-long terminal repeat retrotransposon TRE5-A. Mol. Cell. Biol. 26, 8242–8251 (2006).
Schrijvers, R. et al. HRP-2 determines HIV-1 integration site selection in LEDGF/p75 depleted cells. Retrovirology 9, 84 (2012).
Wang, H. et al. HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Res. 40, 11518–11530 (2012).
Chin, C. R. et al. Direct visualization of HIV-1 replication intermediates shows that capsid and CPSF6 modulate HIV-1 intra-nuclear invasion and integration. Cell Rep. 13, 1717–1731 (2015).
Leem, Y.-E. et al. Retrotransposon Tf1 is targeted to Pol II promoters by transcription activators. Mol. Cell 30, 98–107 (2008).
Majumdar, A., Chatterjee, A. G., Ripmaster, T. L. & Levin, H. L. Determinants that specify the integration pattern of retrotransposon Tf1 in the fbp1 promoter of Schizosaccharomyces pombe. J. Virol. 85, 519–529 (2011).
Ho, K. L. et al. A role for the budding yeast separase, Esp1, in Ty1 element retrotransposition. PLoS Genet. 11, e1005109 (2015).
Morillon, A., Bénard, L., Springer, M. & Lesage, P. Differential effects of chromatin and Gcn4 on the 50-fold range of expression among individual yeast Ty1 retrotransposons. Mol. Cell. Biol. 22, 2078–2088 (2002).
Mok, H.-P. & Lever, A. M. Chromatin, gene silencing and HIV latency. Genome Biol. 8, 228 (2007).
Scott, E. C. et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res. 26, 745–755 (2016).
Deininger, P. et al. A comprehensive approach to expression of L1 loci. Nucleic Acids Res. http://dx.doi.org/10.1093/nar/gkw1067 (2016). References 24, 154 and 155 provide genome-wide evidence that only a limited subset of L1 elements are transcriptionally active, some being polymorphic among individuals, and that these loci are regulated in a cell type-specific manner.
Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).
Beck, C. R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159–1170 (2010).
Tubio, J. M. et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345, 1251343 (2014).
Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).
Curcio, M. J. & Garfinkel, D. J. Single-step selection for Ty1 element retrotransposition. Proc. Natl Acad. Sci. USA 88, 936–940 (1991).
Bryk, M. et al. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255–269 (1997).
Eickbush, D. G. & Eickbush, T. H. R2 retrotransposons encode a self-cleaving ribozyme for processing from an rRNA cotranscript. Mol. Cell. Biol. 30, 3142–3150 (2010).
Zamudio, N. & Bourc'his, D. Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity (Edinb.) 105, 92–104 (2010).
Quadrana, L. & Colot, V. Plant transgenerational epigenetics. Annu. Rev. Genet. 50, 467–491 (2016).
Holoch, D. & Moazed, D. RNA-mediated epigenetic regulation of gene expression. Nat. Rev. Genet. 16, 71–84 (2015).
Sigman, M. J. & Slotkin, R. K. The first rule of plant transposable element silencing: location, location, location. Plant Cell 28, 304–313 (2016).
Kinsey, P. T. & Sandmeyer, S. B. Ty3 transposes in mating populations of yeast: a novel transposition assay for Ty3. Genetics 139, 81–94 (1995).
Ke, N., Irwin, P. A. & Voytas, D. F. The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae. EMBO J. 16, 6272–6280 (1997).
Grandbastien, M. A. LTR retrotransposons, handy hitchhikers of plant regulation and stress response. Biochim. Biophys. Acta 1849, 403–416 (2015).
Deeks, S. G. et al. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12, 607–614 (2012).
Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003).
Lewinski, M. K. et al. Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79, 6610–6619 (2005).
Sherrill-Mix, S. et al. HIV latency and integration site placement in five cell-based models. Retrovirology 10, 90 (2013).
Manson McManamy, M. E., Hakre, S., Verdin, E. M. & Margolis, D. M. Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antivir. Chem. Chemother. 23, 145–149 (2014).
Lusic, M. & Giacca, M. Regulation of HIV-1 latency by chromatin structure and nuclear architecture. J. Mol. Biol. 427, 688–694 (2015).
Koiwa, T. et al. 5′-long terminal repeat-selective CpG methylation of latent human T-cell leukemia virus type 1 provirus in vitro and in vivo. J. Virol. 76, 9389–9397 (2002).
Taniguchi, Y. et al. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms. Retrovirology 2, 64 (2005).
Rafati, H., Moshkin, Y., Mahmoudi, T., Parra, M. & Hakre, S. New transcription regulatory mechanisms of latent HIV LTR. Retrovirology 9, O3 (2012).
Gérard, A. et al. The integrase cofactor LEDGF/p75 associates with Iws1 and Spt6 for postintegration silencing of HIV-1 gene expression in latently infected cells. Cell Host Microbe 17, 107–117 (2015).
Wagner, T. A. et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).
Sandmeyer, S., Patterson, K. & Bilanchone, V. Ty3, a position-specific retrotransposon in budding yeast. Microbiol. Spectr. 3, MDNA3-0057-2014 (2015).
Spaller, T., Kling, E., Glöckner, G., Hillmann, F. & Winckler, T. Convergent evolution of tRNA gene targeting preferences in compact genomes. Mob. DNA 7, 17 (2016).
Guo, Y., Singh, P. K. & Levin, H. L. A long terminal repeat retrotransposon of Schizosaccharomyces japonicus integrates upstream of RNA Pol III transcribed genes. Mob. DNA 6, 19 (2015).
Pardue, M. L. & DeBaryshe, P. G. Retrotransposons that maintain chromosome ends. Proc. Natl Acad. Sci. USA 108, 20317–20324 (2011).
Kasper, D. M., Gardner, K. E. & Reinke, V. Homeland security in the C. elegans germ line: insights into the biogenesis and function of piRNAs. Epigenetics 9, 62–74 (2014).
Molla-Herman, A., Vallés, A. M., Ganem-Elbaz, C., Antoniewski, C. & Huynh, J. R. tRNA processing defects induce replication stress and Chk2-dependent disruption of piRNA transcription. EMBO J. 34, 3009–3027 (2015).
McClintock, B. The significance of responses of the genome to challenge. Science 226, 792–801 (1984).
Morillon, A., Springer, M. & Lesage, P. Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 5766–5776 (2000).
Todeschini, A.-L., Morillon, A., Springer, M. & Lesage, P. Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol. Cell. Biol. 25, 7459–7472 (2005).
Feng, G., Leem, Y.-E. & Levin, H. L. Transposon integration enhances expression of stress response genes. Nucleic Acids Res. 41, 775–789 (2013).
Capy, P., Gasperi, G., Biémont, C. & Bazin, C. Stress and transposable elements: co-evolution or useful parasites? Heredity (Edinb.) 85, 101–106 (2000).
Sehgal, A., Lee, C.-Y. S. & Espenshade, P. J. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast. PLoS Genet. 3, e131 (2007).
Dai, J., Xie, W., Brady, T. L., Gao, J. & Voytas, D. F. Phosphorylation regulates integration of the yeast Ty5 retrotransposon into heterochromatin. Mol. Cell 27, 289–299 (2007). This work provides the first indication that the host can control target specificity in response to stress by regulating the interaction between an integration complex and its tethering factor.
Brown, C. A., Murray, A. W. & Verstrepen, K. J. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr. Biol. 20, 895–903 (2010).
Zou, S., Kim, J. M. & Voytas, D. F. The Saccharomyces retrotransposon Ty5 influences the organization of chromosome ends. Nucleic Acids Res. 24, 4825–4831 (1996).
Biasco, L., Baricordi, C. & Aiuti, A. Retroviral integrations in gene therapy trials. Mol. Ther. 20, 709–716 (2012).
Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).
Erlwein, O. & McClure, M. O. Progress and prospects: foamy virus vectors enter a new age. Gene Ther. 17, 1423–1429 (2010).
Copeland, N. G. & Jenkins, N. A. Harnessing transposons for cancer gene discovery. Nat. Rev. Cancer 10, 696–706 (2010).
Narayanavari, S. A., Chilkunda, S. S., Ivics, Z. & Izsvák, Z. Sleeping Beauty transposition: from biology to applications. Crit. Rev. Biochem. Mol. Biol. 52, 18–44 (2016).
Craigie, R. Targeting HIV-1 DNA integration by swapping tethers. Proc. Natl Acad. Sci. USA 107, 2735–2736 (2010).
El Ashkar, S. et al. BET-independent MLV-based vectors target away from promoters and regulatory elements. Mol. Ther. Nucleic Acids 3, e179 (2014).
Owens, J. B. et al. Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res. 41, 9197–9207 (2013).
Ammar, I., Izsvák, Z. & Ivics, Z. The Sleeping Beauty transposon toolbox. Methods Mol. Biol. 859, 229–240 (2012).
Ballandras-Colas, A. et al. A supramolecular assembly mediates lentiviral DNA integration. Science 355, 93–95 (2017).
Passos, D. O. et al. Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science 355, 89–92 (2017).
Schmidt, M. et al. High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat. Methods 4, 1051–1057 (2007).
Ray, D. A. & Batzer, M. A. Reading TE leaves: new approaches to the identification of transposable element insertions. Genome Res. 21, 813–820 (2011).
Upton, K. R. et al. Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161, 228–239 (2015).
Streva, V. A. et al. Sequencing, identification and mapping of primed L1 elements (SIMPLE) reveals significant variation in full length L1 elements between individuals. BMC Genomics 16, 220 (2015).
Acknowledgements
The authors apologize to many colleagues who have made significant contributions to the field, but whose work could not be cited or discussed owing to space limitations. The authors are grateful to M. Lavigne, A. Doucet and J. Recht for critical reading of the manuscript. This work was supported by grants to G.C. from the Fondation ARC pour la Recherche sur le Cancer (Projet Fondation ARC, 20141201838); the Fondation pour la Recherche Médicale (FRM; DEP20131128533); the French Government (Agence Nationale Recherche (ANR)) through 'Investments for the Future' (LABEX SIGNALIFE, ANR-11- LABX-0028-01) and through the generic call project RETROMET (ANR-16-CE12-0020); the Cancéropôle Provence-Alpes-Côte d'Azur (Projet Emergence), Centre National de la Recherche Scientifique (CNRS; GDR 3546); and the University Hospital Federation (FHU) OncoAge. T.S. was supported by a joint Erasmus Mundus Mobility with Asia fellowship between Université Côte d'Azur, France, and University of Dhaka, Bangladesh. The work of P.L. is supported by intramural funding from CNRS, the Université Paris Diderot and the Institut National de la Santé et de la Recherche Médicale, and by grants from the Canceropôle Ile de France (2015–1 EMERG-24), Fondation ARC pour la Recherche sur le Cancer (PJA 20151203412), the ANR through the initiatives d'excellence (Idex ANR-11-IDEX-0005-02), the Labex Who am I? ANR11-LABX-0071) and the generic call project NiCiTy (ANR-13-BSV3-0012). The work of A.Z. is supported by intramural funding from Conservatoire National des Arts et Métiers, France.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information S1 (table) (PDF 136 kb)
Glossary
- Cis-regulatory sequences
-
Sequences within a DNA or RNA molecule that regulate transactions involving the same nucleic acid (for example, transcription, splicing, polyadenylation, translation, degradation, replication and recombination).
- Selection
-
A process by which biological and environmental constraints eliminate — or favour the reproduction of — organisms or cells with a given phenotype.
- Tropism
-
In the context of this Review, the propensity of a transposable element to target specific genomic regions. The term can also refer to the preferred cell type or tissue of an infectious microorganism.
- Accessions
-
Strains from a plant variety that has been propagated from seeds collected from a single individual in the wild. Accessions are typically given the name of the location from which the seeds were collected.
- Euchromatic
-
A term that describes a type of chromatin that is less tightly packed and is enriched in transcribed genes.
- Closed mitosis
-
A cell division in which the nuclear envelope stays intact.
Rights and permissions
About this article
Cite this article
Sultana, T., Zamborlini, A., Cristofari, G. et al. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 18, 292–308 (2017). https://doi.org/10.1038/nrg.2017.7
Published:
Issue Date:
DOI: https://doi.org/10.1038/nrg.2017.7
- Springer Nature Limited
This article is cited by
-
Comprehensive analysis of the Xya riparia genome uncovers the dominance of DNA transposons, LTR/Gypsy elements, and their evolutionary dynamics
BMC Genomics (2024)
-
Snapshots of genetic copy-and-paste machinery in action
Nature (2024)
-
Transposable elements as essential elements in the control of gene expression
Mobile DNA (2023)
-
The composition of piRNA clusters in Drosophila melanogaster deviates from expectations under the trap model
BMC Biology (2023)
-
RepBox: a toolbox for the identification of repetitive elements
BMC Bioinformatics (2023)