Skip to main content
Log in

Therapy

Metformin takes a new route to clinical efficacy

  • News & Views
  • Published:

From Nature Reviews Endocrinology

View current issue Sign up to alerts

Metformin is currently the first-line treatment option for patients with type 2 diabetes mellitus, yet its mechanism of action remains uncertain. A new study reveals the important role for the activation of a duodenal AMPK-dependent neuronal pathway in the acute antihyperglycaemic effect of metformin and the inhibition of hepatic glucose production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Metformin reduces hepatic glucose production through a gut–brain–liver axis.

References

  1. American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 37 (Suppl. 1), S14–S80 (2014).

  2. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    Article  CAS  Google Scholar 

  3. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  CAS  Google Scholar 

  4. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  CAS  Google Scholar 

  5. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    Article  CAS  Google Scholar 

  6. Bailey, C. J., Wilcock, C. & Scarpello, J. H. Metformin and the intestine. Diabetologia 51, 1552–1553 (2008).

    Article  CAS  Google Scholar 

  7. Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506–511 (2015).

    Article  CAS  Google Scholar 

  8. Maida, A., Lamont, B. J., Cao, X. & Drucker, D. J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia 54, 339–349 (2011).

    Article  CAS  Google Scholar 

  9. Napolitano, A. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE 9, e100778 (2014).

    Article  Google Scholar 

  10. Côté, C. D. et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat. Med. 21, 498–505 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from INSERM, CNRS, Université Paris Descartes, Agence Nationale de la Recherche, Société Francophone du Diabète, Région Ile de France, Association pour la Recherche sur le Diabète and the Département Hospitalo-Universitaire (DHU) AUToimmune and HORmonal diseaseS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Viollet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foretz, M., Viollet, B. Metformin takes a new route to clinical efficacy. Nat Rev Endocrinol 11, 390–392 (2015). https://doi.org/10.1038/nrendo.2015.85

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.85

  • Springer Nature Limited

This article is cited by

Navigation