Skip to main content

Advertisement

Log in

Spheroid-based human endothelial cell microvessel formation in vivo

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

The study of angiogenic endothelial cells (ECs) has in recent years greatly stimulated multiple fields of vascular biology research. A number of cellular models and numerous complex developmental, manipulatory and tumor animal models have been developed to study angiogenesis in vitro and in vivo. To connect the versatility of cellular assays with the complexity of readouts of in vivo experimentation, we have developed an endothelial transplantation assay. This assay is based on grafting ex vivo generated EC spheroids (2 d) in a suitable matrix in immunocompromised mice, to give rise to a 3D network of capillaries (20 d). This vasculature connects to the mouse vasculature, is perfused and matures by recruiting mouse mural cells. Here we describe the detailed protocol for this assay, including generation of spheroids, injection into mice, excision and processing of resulting plugs, and quantification by immunohistochemical analysis of the resulting vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Flow chart of the in vivo angiogenesis assay.
Figure 2: Preparation of spheroids.
Figure 3: Injection and dissection of a matrigel–fibrin plug.
Figure 4: Human neovessel formation originating from transplanted endothelial cell (EC) spheroids.
Figure 5: Characterization of the human vascularization in vivo 20 d after implantation.
Figure 6: Co-grafting of different tumor cell populations (HT29, colon cancer; LLC, Lewis lung carcinoma; A375, melanoma) with human umbilical vein endothelial cell (HUVEC) spheroids to show the contribution of co-grafted endothelial cell (EC) to tumor angiogenesis.

Similar content being viewed by others

References

  1. Adams, R.H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  Google Scholar 

  2. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  Google Scholar 

  3. Kerbel, R.S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    Article  CAS  Google Scholar 

  4. Eichmann, A., Makinen, T. & Alitalo, K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev. 19, 1013–1021 (2005).

    Article  CAS  Google Scholar 

  5. Neufeld, G. & Kessler, O. The semaphorins: versatile regulators of tumour progression and tumour angiogenesis. Nat. Rev. Cancer 8, 632–645 (2008).

    Article  CAS  Google Scholar 

  6. Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314, 15–23 (2003).

    Article  Google Scholar 

  7. Ellis, L.M. & Hicklin, D.J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579–591 (2008).

    Article  CAS  Google Scholar 

  8. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  Google Scholar 

  9. Augustin, H.G. Methods in Endothelial Cell Biology (Springer, Berlin, 2004).

  10. Ausprunk, D.H., Knighton, D.R. & Folkman, J. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am. J. Pathol. 79, 597–618 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Korff, T. & Augustin, H.G. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143, 1341–1352 (1998).

    Article  CAS  Google Scholar 

  12. Norrby, K. In vivo models of angiogenesis. J. Cell Mol. Med. 10, 588–612 (2006).

    Article  CAS  Google Scholar 

  13. Passaniti, A. et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab. Invest. 67, 519–528 (1992).

    CAS  PubMed  Google Scholar 

  14. Jain, R.K., Schlenger, K., Hockel, M. & Yuan, F. Quantitative angiogenesis assays: progress and problems. Nat. Med. 3, 1203–1208 (1997).

    Article  CAS  Google Scholar 

  15. Alajati, A. et al. Spheroid-based engineering of a human vasculature in mice. Nat. Methods 5, 439–445 (2008).

    Article  CAS  Google Scholar 

  16. Wong, C., Inman, E., Spaethe, R. & Helgerson, S. Fibrin-based biomaterials to deliver human growth factors. Thromb. Haemost. 89, 573–582 (2003).

    Article  CAS  Google Scholar 

  17. Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  Google Scholar 

  18. Kleinman, H.K. Preparation of gelled substrates. Curr. Protoc. Cell Biol. Chapter 10, Unit 10.3 (2001).

Download references

Acknowledgements

This work was supported by grants from the German Research Council (DFG, AU83/10-1) and the European Union [LSHG-CT-2004-503573]. HGA is supported by an endowed chair from the Aventis Foundation. Holger Weber is an employee of ProQinase GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hellmut G Augustin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laib, A., Bartol, A., Alajati, A. et al. Spheroid-based human endothelial cell microvessel formation in vivo. Nat Protoc 4, 1202–1215 (2009). https://doi.org/10.1038/nprot.2009.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.96

  • Springer Nature Limited

This article is cited by

Navigation