Skip to main content
Log in

Preparation of macromolecular complexes for cryo-electron microscopy

  • Protocol
  • Published:

From Nature Protocols

View current issue Submit your manuscript

Abstract

This protocol describes the preparation of frozen-hydrated single-particle specimens of macromolecular complexes. First, it describes how to create a grid surface coated with holey carbon by first inducing holes in a Formvar film to act as a template for the holey carbon that is stable under cryo-electron microscopy (cryo-EM) conditions and is sample-friendly. The protocol then describes the steps required to deposit the homogeneous sample on the grid and to plunge-freeze the grid into liquid ethane at the temperature of liquid nitrogen, so that it is suitable for cryo-EM visualization. It takes 4–5 h to make several hundred holey carbon grids and about 1 h to make the frozen-hydrated grids. The time required for sample purification varies from hours to days, depending on the sample and the specific procedure required. A companion protocol details how to collect cryo-EM data using an FEI Tecnai transmission electron microscope that can subsequently be processed to obtain a three-dimensional reconstruction of the macromolecular complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2: Sample cryo-EM images.
Figure 3: Good holey Formvar.
Figure 4: Pseudo-holey Formvar.
Figure 5: Carbon-coated mica.
Figure 6: Micrograph of ribosomes in vitreous ice.
Figure 7: Manual plunge-freezing apparatus.

Similar content being viewed by others

References

  1. Sjoberg, A., Onnerfjord, P., Morgelin, M., Heinegard, D. & Blom, A.M. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J. Biol. Chem. 280, 32301–32308 (2005).

    Article  Google Scholar 

  2. Spahn, C.M. et al. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291, 1959–1962 (2001).

    Article  CAS  Google Scholar 

  3. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    Article  CAS  Google Scholar 

  4. Halic, M., Becker, T., Frank, J., Spahn, C.M. & Beckmann, R. Localization and dynamic behavior of ribosomal protein L30e. Nat. Struct. Mol. Biol. 12, 467–468 (2005).

    Article  CAS  Google Scholar 

  5. Jiang, W. & Ludtke, S.J. Electron cryomicroscopy of single particles at subnanometer resolution. Curr. Opin. Struct. Biol. 15, 571–577 (2005).

    Article  CAS  Google Scholar 

  6. Taylor, D.J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 26, 2421–2431 (2007).

    Article  CAS  Google Scholar 

  7. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899–906 (2003).

    Article  CAS  Google Scholar 

  8. Rossmann, M.G. Fitting atomic models into electron-microscopy maps. Acta Crystallogr. D Biol. Crystallogr. 56, 1341–1349 (2000).

    Article  CAS  Google Scholar 

  9. Grassucci, R.A., Taylor, D. & Frank, J. Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai TEMs. Nat. Protoc. (in the press) doi: 10.1038/nprot.2007.474.

  10. Gao, H. et al. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129, 929–941 (2007).

    Article  CAS  Google Scholar 

  11. Roseman, A.M., Ranson, N.A., Gowen, B., Fuller, S.D. & Saibil, H.R. Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy. J. Struct. Biol. 135, 115–125 (2001).

    Article  CAS  Google Scholar 

  12. Baumeister, W. & Seredynski, J. Preparation of perforated films with predeterminable hole size distributions. Micron 7, 49–54 (1976).

    Google Scholar 

  13. Dubochet, J., Groom, M. & Mueller-Neuteboom, S. The mounting of macromolecules for electron microscopy with particular reference to surface phenomena and treatment of support films by glow discharge. In Advances in Optical and Electron Microscopy (eds. Barrer, R. & Cosslett, V.E.) 107–135 (Academic Press, London, New York, 1982).

    Google Scholar 

  14. Stoffler, G. & Stoffler-Meilicke, M. Immunoelectron microscopy of ribosomes. Annu. Rev. Biophys. Bioeng. 13, 303–330 (1984).

    Article  CAS  Google Scholar 

  15. Stöffler, G. & Stöffler-Meilicke, M. The ultrastructure of macromolecular complexes studied with antibodies. In Modern Methods in Protein Chemistry (ed. Tesche, H.) 409–455 (De Gruyter, Berlin, 1983).

    Google Scholar 

  16. Ohi, M., Li, Y., Cheng, Y. & Walz, T. Negative staining and image classification—powerful tools in modern electron microscopy. Biol. Proced. Online 6, 23–34 (2004).

    Article  CAS  Google Scholar 

  17. Adrian, M., Dubochet, J., Fuller, S.D. & Harris, J.R. Cryo-negative staining. Micron 29, 145–160 (1998).

    Article  CAS  Google Scholar 

  18. Dubochet, J., Lepault, J., Freeman, R., Berriman, J.A. & Homo, J.-C. Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219–237 (1982).

    Article  Google Scholar 

  19. Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 21, 3557–3567 (2002).

    Article  CAS  Google Scholar 

  20. Scheres, S.H. et al. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat. Methods 4, 27–29 (2007).

    Article  CAS  Google Scholar 

  21. Gao, H. et al. Study of the structural dynamics of the E coli 70S ribosome using real-space refinement. Cell 113, 789–801 (2003).

    Article  CAS  Google Scholar 

  22. Cyrklaff, M., Adrian, M. & Dubochet, J. Evaporation during preparation of unsupported thin vitrified aqueous layers for cryo-electron microscopy. J. Electron Microsc. Tech. 16, 351–355 (1990).

    Article  CAS  Google Scholar 

  23. Iancu, C.V. et al. Electron cryotomography sample preparation using the Vitrobot. Nat. Protoc. 1, 2813–2819 (2007).

    Article  Google Scholar 

  24. White, H.D., Thirumurugan, K., Walker, M.L. & Trinick, J. A second generation apparatus for time-resolved electron cryo-microscopy using stepper motors and electrospray. J. Struct. Biol. 144, 246–252 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from HHMI, NIH R37 GM29169, R01 GM55440 and P41 RR01219. We also thank M. Watters for assistance in the preparation of the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Frank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassucci, R., Taylor, D. & Frank, J. Preparation of macromolecular complexes for cryo-electron microscopy. Nat Protoc 2, 3239–3246 (2007). https://doi.org/10.1038/nprot.2007.452

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.452

  • Springer Nature Limited

This article is cited by

Navigation