Abstract
Lichens are highly specialized symbioses between heterotrophic fungi and photoautotrophic green algae or cyanobacteria. The mycobionts of many lichens produce morphologically complex thalli to house their photobionts. Lichens play important roles in ecosystems and have been used as indicators of environmental change. Here we report the finding of 152 new fossil lichens from European Palaeogene amber, and hence increase the total number of known fossil lichens from 15 to 167. Most of the fossils represent extant lineages of the Lecanoromycetes, an almost exclusively lichen-symbiotic class of Ascomycota. The fossil lichens show a wide diversity of morphological adaptations that attached epiphytic thalli to their substrates, helped to combine external water storage with effective gas exchange and facilitated the simultaneous reproduction and dispersal of both partners in symbiosis. The fossil thallus morphologies suggest that the climate of European Palaeogene amber forests was relatively humid and most likely temperate.
Similar content being viewed by others
References
Lawrey, J. D. et al. High concentration of basidiolichens in a single family of agaricoid mushrooms (Basidiomycota: Agaricales: Hygrophoraceae). Mycol. Res. 113, 1154–1171 (2009).
Schoch, K. et al. The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst. Biol. 58, 224–239 (2009).
Lücking, R., Dal-Forno, M. & Sikaroodi, M. A single macrolichen constitutes hundreds of unrecognized species. Proc. Natl Acad. Sci. USA 111, 11091–11096 (2014).
Feuerer, T. & Hawksworth, D. L. Biodiversity of lichens, including a world-wide analysis of checklist data based on Takhtajan's floristic regions. Biodivers. Conserv. 16, 85–98 (2007).
Rikkinen, J. Cyanolichens. Biodivers. Conserv. 24, 973–993 (2015).
Köhler, L., Hölscher, D., Bruijnzeel, L. A. & Leuschner, C. in Tropical Montane Cloud Forests (eds Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. ) 67–76 (Cambridge Univ. Press, 2010).
Elbert, W. et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat. Geosci. 5, 459–462 (2012).
Ellis, C. J. Lichen epiphyte diversity: a species, community and trait-based review. Perspect. Plant Ecol. Evol. Syst. 14, 131–152 (2012).
Honegger, R. in The Mycota IX: Fungal Associations 2nd edn (ed. Hock, B. ) 287–339 (Springer, 2012).
Matsunaga, K. K. S., Stockey, R. A. & Tomescu, A. M. F. Honeggeriella complexa gen. et sp. nov., a heteromerous lichen from the Lower Cretaceous of Vancouver Island (British Columbia, Canada). Am. J. Bot. 100, 450–459 (2013).
Hartl, C. et al. Lichen preservation in amber: morphology, ultrastructure, chemofossils, and taphonomic alteration. Foss. Rec. 18, 127–135 (2015).
Kaasalainen, U. et al. The enigmatic fossil Alectoria succini Mägdefrau reconsidered, and new evidence of alectorioid morphologies in Palaeogene lichens. PLoS ONE 10, e0129526 (2015).
Kaasalainen, U. et al. A Caribbean epiphyte community preserved in Miocene Dominican amber. Earth Env. Sci. T. R. Soc. (in the press).
Taylor, T. N., Hass, H. & Kerp, H. A cyanolichen from the Lower Devonian Rhynie chert. Am. J. Bot. 84, 992–1004 (1997).
Karatygin, I. V., Snigerevskaya, N. S. & Vikulin, S. V. The most ancient terrestrial lichen Winfrenatia reticulata: a new find and new interpretation. Paleontol. J. 43, 107–114 (2009).
Honegger, R., Edwards, D. & Axe, L. The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol. 197, 264–275 (2013).
Goeppert, H. R. & Berendt, G. C. Der Bernstein und die in ihm befindlichen Pflanzenreste der Vorwelt (Nicolaische Buchhandlung, 1845).
Caspary, R. & Klebs, R. Die Flora des Bernsteins und anderer fossiler Harze des ostpreußischen Tertiars (Königlich Preußische Geologische Landesanstalt, 1907).
Caspary, R. & Klebs, R. Atlas von dreissig Tafeln zu der Abhandlung: Die Flora des Bernsteins und anderer fossiler Harze des ostpreußischen Tertiärs (Königlich Preußische Geologische Landesanstalt, 1907).
Rikkinen, J. & Poinar, G. O. Jr. Fossilised Anzia (Lecanorales, lichen-forming Ascomycota) from European Tertiary amber. Mycol. Res. 106, 984–990 (2002).
Rikkinen, J. Calicioid lichens from European Tertiary amber. Mycologia 95, 1032–1036 (2003).
Beimforde, C. et al. Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol. Phylogenet. Evol. 78, 386–398 (2014).
Peterson, E. B. An overlooked fossil lichen (Lobariaceae). Lichenologist 32, 298–300 (2000).
Poinar, G. O. Jr, Peterson, E. B. & Platt, J. L. Fossil Parmelia in new world amber. Lichenologist 32, 263–269 (2000).
Rikkinen, J. & Poinar, G. O. Jr. A new species of Phyllopsora (Lecanorales, lichen-forming Ascomycota) from Dominican amber, with remarks on the fossil history of lichens. J. Exp. Bot. 59, 1007–1011 (2008).
Amo de Paz, G., Cubas, P., Divakar, P. K., Lumbsch, H. T. & Crespo, A. Origin and diversification of major clades in parmelioid lichens (Parmeliaceae, Ascomycota) during the Palaeogene inferred by Bayesian analysis. PLoS ONE 12, e28161 (2011).
Prieto, M. & Wedin, M. Dating the diversification of the major lineages of Ascomycota (fungi). PLoS ONE 8, e65576 (2013).
Divakar, P. K. et al. Evolution of complex symbiotic relationships in a morphologically derived family of lichen-forming fungi. New Phytol. 208, 1217–1226 (2015).
Crespo, A. et al. Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59, 1735–1753 (2010).
Miadlikowska, J. et al. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol. Phylogenet. Evol. 79, 132–168 (2014).
Yoshimura, I. Taxonomy and speciation of Anzia and Pannoparmelia. Bibl. Lichenol. 25, 185–195 (1987).
Jayalal, U. et al. Anzia mahaeliyensis and Anzia flavotenuis, two new lichen species from Sri Lanka. Lichenologist 44, 381–389 (2012).
Wang, X. Y. et al. Taxonomic study of the genus Anzia (Lecanorales, lichenized Ascomycota) from Hengduan Mountains, China. Lichenologist 47, 99–115 (2015).
Mosbrugger, V., Utescher, T. & Dilcher, D. L. Cenozoic continental climatic evolution of central Europe. Proc. Natl Acad. Sci. USA 102, 14964–14969 (2005).
Collinson, M. E. in Eocene-Oligocene Climatic and Biotic Evolution (eds Prothero, D. R. & Berggren, W. A. ) 437–450 (Princeton Univ. Press, 1992).
Kohlman-Adamska, A. in The Amber Treasure Trove, Part 1 (ed. Kosmowska-Ceranowicz, B. ) 15–18 (Oficyna Wydawnicza Sadyba, 2001).
Sadowski, E.-M., Schmidt, A. R., Seyfullah, L. J. & Kunzmann, L. Conifers of the ‘Baltic amber forest’ and their palaeoecological significance. Stapfia (in the press).
Kershaw, K. A. Physiological Ecology of Lichens (Cambridge Univ. Press, 1985).
Rikkinen, J. Habitat shifts and morphological variation of Pseudevernia furfuracea along a topographic gradient. Symb. Bot. Ups. 32, 223–245 (1997).
Gauslaa, Y. & Coxson, D. Interspecific and intraspecific variations in water storage in epiphytic old forest foliose lichens. Botany 89, 787–798 (2011).
Green, T. G. A. & Lange, O. L. Ecophysiological adaptations of the lichen genera Pseudocyphellaria and Sticta to south temperate rainforests. Lichenologist 23, 267–282 (1991).
Valladares, F., Sancho, L. G. & Ascaso, C. Water storage in the lichen family Umbilicariaceae. Bot. Acta. 111, 99–107 (1997).
Lange, O. L., Büdel, B., Meyer, A., Zellner, H. & Zotz, G. Lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rainforest in Panama. Lichenologist 36, 329–342 (2004).
Rikkinen, J. Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6, 3–32 (2013).
Rikkinen, J. Ecological and evolutionary role of photobiont-mediated guilds in lichens. Symbiosis 34, 99–110 (2003).
Kaasalainen, U. et al. Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis. Proc. Natl Acad. Sci. USA 109, 5886–5891 (2012).
Belinchón, R., Yahr, R. & Ellis, C. J. Interactions among species with contrasting dispersal modes explain distributions for epiphytic lichens. Ecography 37, 1–7 (2014).
Dal Grande, F. et al. Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol. 202, 455–447 (2014).
Cornejo, C. & Scheidegger, C. Cyanobacterial gardens: the liverwort Frullania asagrayana acts as a reservoir of lichen photobionts. Environ. Microbiol. Rep. 8, 352–357 (2016).
Standke, G. Bitterfelder Bernstein gleich Baltischer Bernstein?–Eine geologische Raum-Zeit-Betrachtung und genetische Schlußfolgerungen. Exkurs.f. und Veröfftl. DGG 236, 11–33 (2008).
Weitschat, W. & Wichard, W. Atlas of Plants and Animals in Baltic Amber (Verlag Dr. Friedrich Pfeil, 2010).
Kosmowska-Ceranowicz, B., Kohlman-Adamska, A. & Grabowska, I. Erste Ergebnisse zur Lithologie und Palynologie der bernsteinführenden Sedimente im Tagebau Primorskoje. Metalla 66, 5–17 (1997).
Standke, G. Die Tertiärprofile der samländischen Bernsteinküste bei Rauschen. Schriftenreihe für Geowissenschaften 7, 93–133 (1998).
Kasiński, J. R. & Kramarska, R. Sedimentary environment of amber-bearing association along the Polish-Russian Baltic coastline. Exkurs.f. und Veröfftl. DGG 236, 46–57 (2008).
Ritzkowski, S. K-Ar Altersbestimmungen der bernsteinführenden Sedimente des Samlandes (Paläogen, Bezirk Kaliningrad). Metalla 66, 19–24 (1997).
Clauer, N., Huggett, J. & Hillier, S. How reliable is the K-Ar glauconite chronometer? A case study of Eocene sediments from the Isle of Wight. Clay Minerals 40, 167–176 (2005).
Grimaldi, D. & Ross, A. in Terrestrial Conservation Lagerstätten: Windows into the Evolution of Life on Land (eds Fraser, N. C. & Sues, H.-D. ) (Dunedin Acad. Press, in the press).
Blumenstengel, H. Zur Palynologie und Stratigraphie der Bitterfelder Bernsteinvorkommen (Tertiär). Exkurs.f. und Veröfftl. DGG 224, 17 (2004).
Knuth, G., Koch, T., Rappsilber, I. & Volland, L. Concerning amber in the Bitterfeld region—geologic and genetic aspects. Hallesches Jahrbuch für Geowissenschaften 24, 35–46 (2002).
Weitschat, W. Bitterfelder Bernstein – ein eozäner Bernstein auf miozäner Lagerstätte. Metalla 66, 71–84 (1997).
Dunlop, J. A. in Biodiversity of Fossils in Amber (ed. Penney, D. ) 57–68 (Siri Scientific Press, 2010).
Wolfe, A. P., McKellar, R. C., Tappert, R., Sodhi, R. N. S. & Muehlenbachs, K. Bitterfeld amber is not Baltic amber: three geochemical tests and further constraints on the botanical affinities of succinate. Rev. Palaeobot. Palynol. 225, 21–32 (2016).
Liehmann, G. Die maschinelle Gewinnung und Aufbereitung des Bernsteins im Tagebau Goitsche bei Bitterfeld – ein Erlebnisbericht. Exkurs.f. und Veröfftl. DGG 249, 24–30 (2013).
Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl Acad. Sci. USA 109, 14796–14801 (2012).
Nascimbene, P. & Silverstein, H. in Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey (ed. Grimaldi, D. A. ) 93–102 (Backhuys Publishers, 2000).
Acknowledgements
We thank V. Arnold (Heide), H. Grabenhorst (Wienhausen), C. Gröhn (Glinde), C. and H. W. Hoffeins (Hamburg), M. Kobbert (Münster), K. Nordman Ernst (Skagen), F. Witsch (Köln) and J. Wunderlich (Hirschberg) for providing specimens for this study, and G. Bechly (Stuttgart), A. Gehler (Göttingen) and C. Neumann (Berlin) for access to museum collections. D. Hause-Reitner (Göttingen) assisted with SEM imaging. This study was supported by the Alexander von Humboldt Foundation (grant to U.K.).
Author information
Authors and Affiliations
Contributions
U.K., A.R.S. and J.R. designed and performed research, analysed data and wrote the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Table 1. (PDF 286 kb)
Rights and permissions
About this article
Cite this article
Kaasalainen, U., Schmidt, A. & Rikkinen, J. Diversity and ecological adaptations in Palaeogene lichens. Nature Plants 3, 17049 (2017). https://doi.org/10.1038/nplants.2017.49
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/nplants.2017.49
- Springer Nature Limited
This article is cited by
-
Composition, structure and robustness of Lichen guilds
Scientific Reports (2023)
-
The largest amber-preserved flower revisited
Scientific Reports (2023)
-
Crustose lichens with lichenicolous fungi from Paleogene amber
Scientific Reports (2019)
-
Fungi trapped in amber—a fossil legacy frozen in time
Mycological Progress (2019)