Skip to main content
Log in

Role of auxiliary proteins in Rubisco biogenesis and function

  • Review Article
  • Published:

From Nature Plants

View current issue Submit your manuscript

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric CO2 into organic compounds during photosynthesis. Despite its pivotal role in plant metabolism, Rubisco is an inefficient enzyme and has therefore been a key target in bioengineering efforts to improve crop yields. Much has been learnt about the complex cellular machinery involved in Rubisco assembly and metabolic repair over recent years. The simple form of Rubisco found in certain bacteria and dinoflagellates comprises two large subunits, and generally requires the chaperonin system for folding. However, the evolution of hexadecameric Rubisco, which comprises eight large and eight small subunits, from its dimeric precursor has rendered Rubisco in most plants, algae, cyanobacteria and proteobacteria dependent on an array of additional factors. These auxiliary factors include several chaperones for assembly as well as ATPases of the AAA+ family for functional maintenance. An integrated view of the pathways underlying Rubisco biogenesis and repair will pave the way for efforts to improve the enzyme with the goal of increasing crop yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Central role of Rubisco in photosynthesis.
Figure 2: Comparison of green-type and red-type Rubisco.
Figure 3: The bacterial chaperonin system.
Figure 4: The RbcX assembly chaperone.
Figure 5: Models of Rubisco assembly.
Figure 6: Rubisco inactivation and reactivation.

Similar content being viewed by others

References

  1. Andersson, I. & Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 46, 275–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Miziorko, H. M. & Lorimer, G. H. Ribulose-1,5-bisphosphate carboxylase-oxygenase. Annu. Rev. Biochem. 52, 507–535 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Hartman, F. C. & Harpel, M. R. Structure, function, regulation, and assembly of D-Ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu. Rev. Biochem. 63, 197–234 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Ellis, R. J. Biochemistry: Tackling unintelligent design. Nature 463, 164–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Andersson, I. Catalysis and regulation in Rubisco. J. Exp. Bot. 59, 1555–1568 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Portis, A. R. & Parry, M. A. J. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth. Res. 94, 121–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Maurino, V. G. & Peterhansel, C. Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 13, 249–256 (2010).

    Article  PubMed  Google Scholar 

  9. Peterhansel, C., Niessen, M. & Kebeish, R. M. Metabolic engineering towards the enhancement of photosynthesis. Photochem. Photobiol. 84, 1317–1323 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Whitney, S. M., Houtz, R. L. & Alonso, H. Advancing our understanding and capacity to engineer nature's CO2-sequestering enzyme, Rubisco. Plant Physiol. 155, 27–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Pearce, F. G. Catalytic by-product formation and ligand binding by Ribulose bisphosphate carboxylases from different phylogenies. Biochem. J. 399, 525–534 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Evans, J. R. & von Caemmerer, S. Enhancing photosynthesis. Plant Physiol. 155, 19 (2011).

  13. Raines, C. A. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol. 155, 36–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Evans, J. R. Improving photosynthesis. Plant Physiol. 162, 1780–1793 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parry, M. A. J. et al. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 64, 717–730 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E. & Scott, S. S. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59, 1515–1524 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Parry, M. A., Andralojc, P. J., Mitchell, R. A., Madgwick, P. J. & Keys, A. J. Manipulation of Rubisco: the amount, activity, function and regulation. J. Exp. Bot 54, 1321–1333 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Spreitzer, R. J. Role of the small subunit in Ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch. Biochem. Biophys. 414, 141–149 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ishikawa, C., Hatanaka, T., Misoo, S., Miyake, C. & Fukayama, H. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol. 156, 1603–1611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tabita, F. R. Microbial Ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosynth. Res. 60, 1–28 (1999).

    Article  CAS  Google Scholar 

  21. Schwenkert, S., Soll, J. & Bolter, B. Protein import into chloroplasts—how chaperones feature into the game. Biochim. Biophys. Acta 1808, 901–911 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Whitney, S. M., Baldet, P., Hudson, G. S. & Andrews, T. J. Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J. 26, 535–547 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Duff, A. P., Andrews, T. J. & Curmi, P. M. The transition between the open and closed states of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. J. Mol. Biol. 298, 903–916 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Barraclough, R. & Ellis, R. J. Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into Ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim. Biophys. Acta 608, 18–31 (1980).

    Article  Google Scholar 

  25. Hartl, F. U. & Hayer-Hartl, M. The first chaperonin. Nature Rev. Mol. Cell Biol. 14, 611 (2013).

    Article  CAS  Google Scholar 

  26. Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M. & Hartl, F. U. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82, 323–355 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Brinker, A. et al. Dual function of protein confinement in chaperonin-assisted protein folding. Cell 107, 223–233 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, C. et al. Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463, 197–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Vitlin Gruber, A., Nisemblat, S., Azem, A. & Weiss, C. The complexity of chloroplast chaperonins. Trends Plant Sci. 18, 688–694 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Weiss, C., Bonshtien, A., Farchi-Pisanty, O., Vitlin, A. & Azem, A. Cpn20: siamese twins of the chaperonin world. Plant Mol. Biol. 69, 227–238 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Tsai, Y-C. C., Mueller-Cajar, O., Saschenbrecker, S., Hartl, F. U. & Hayer-Hartl, M. Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J. Biol. Chem. 287, 20471–20481 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vitlin Gruber, A., Zizelski, G., Azem, A. & Weiss, C. The Cpn10(1) co-chaperonin of A. thaliana functions only as a hetero-oligomer with Cpn20. PLoS ONE 9, e113835 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Saibil, H. R., Fenton, W. A., Clare, D. K. & Horwich, A. L. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 425, 1476–1487 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Bonshtien, A. L. et al. Differential effects of co-chaperonin homologs on Cpn60 oligomers. Cell Stress Chaperones 14, 509–519 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Goloubinoff, P., Christeller, J. T., Gatenby, A. A. & Lorimer, G. H. Reconstitution of active dimeric Ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP. Nature 342, 884–889 (1989).

    Article  CAS  PubMed  Google Scholar 

  37. Georgescauld, F. et al. GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157, 922–934 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Larimer, F. W. & Soper, T. S. Overproduction of Anabaena 7120 Ribulose-bisphosphate carboxylase/oxygenase in Escherichia coli. Gene 126, 85–92 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Emlyn-Jones, D., Woodger, F. J., Price, G. D. & Whitney, S. M. RbcX can function as a Rubisco chaperonin, but is non-essential in Synechococcus PCC7942. Plant Cell Physiol. 47, 1630–1640 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Andrews, T. J. Catalysis by cyanobacterial Ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J. Biol. Chem. 263, 12213–12219 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Saschenbrecker, S. et al. Structure and function of RbcX, an assembly chaperone for hexadecameric Rubisco. Cell 129, 1189–1200 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Kolesinski, P., Belusiak, I., Czarnocki-Cieciura, M. & Szczepaniak, A. Rubisco accumulation factor 1 from Thermosynechococcus elongatus participates in the final stages of Ribulose-1,5-bisphosphate carboxylase/oxygenase assembly in Escherichia coli cells and in vitro. FEBS J. 281, 3920–3932 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Tabita, F. R. Rubisco: The enzyme that keeps on giving. Cell 129, 1039–1040 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Li, L-A. & Tabita, F. R. Maximum activity of recombinant Ribulose 1,5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcx gene. J. Bact. 179, 3793–3796 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Onizuka, T. et al. The rbcX gene product promotes the production and assembly of Ribulose-1, 5-bisphosphate carboxylase/oxygenase of Synechococcus sp. PCC7002 in Escherichia coli. Plant Cell Physiol. 45, 1390–1395 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka, S., Sawaya, M. R., Kerfeld, C. A. & Yeates, T. O. Structure of the Rubisco chaperone RbcX from Synechocystis sp. PCC6803. Acta Crystallogr. D Biol. Crystallogr. 63, 1109–1112 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Tarnawski, M., Krzywda, S., Bialek, W., Jaskolski, M. & Szczepaniak, A. Structure of the Rubisco chaperone RbcX from the thermophilic cyanobacterium Thermosynechococcus elongatus. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 67, 851–857 (2011).

    Article  CAS  Google Scholar 

  48. Kolesinski, P. et al. Insights into eukaryotic Rubisco assembly — Crystal structures of RbcX chaperones from Arabidopsis thaliana. Biochim. Biophys. 1830, 2899–2906 (2013).

    Article  CAS  Google Scholar 

  49. Kolesinski, P., Piechota, J. & Szczepaniak, A. Initial characteristics of RbcX proteins from Arabidopsis thaliana. Plant Mol. Biol. 77, 447–459 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bracher, A., Starling-Windhof, A., Hartl, F. U. & Hayer-Hartl, M. Crystal structure of a chaperone-bound assembly intermediate of form I Rubisco. Nature Struct. Mol. Biol. 18, 875–880 (2011).

    Article  CAS  Google Scholar 

  51. van Lun, M., van der Spoel, D. & Andersson, I. Subunit interface dynamics in hexadecameric Rubisco. J. Mol. Biol. 411, 1083–1098 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Tarnawski, M., Gubernator, B., Kolesinski, P. & Szczepaniak, A. Heterologous expression and initial characterization of recombinant RbcX protein from Thermosynechococcus elongatus BP-1 and the role of RbcX in Rubisco assembly. Acta Biochim. Pol. 55, 777–785 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Pechmann, S., Willmund, F. & Frydman, J. The ribosome as a hub for protein quality control. Mol. Cell 49, 411–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Checa, S. K. & Viale, A. M. The 70-Kda Heat-shock protein Dnak chaperone system is required for the productive folding of Ribulose-bisphosphate carboxylase subunits in Escherichia Coli. Eur. J. Biochem. 248, 848–855 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Ivey, R. A. III, Subramanian, C. & Bruce, B. D. Identification of a Hsp70 recognition domain within the rubisco small subunit transit peptide. Plant Physiol. 122, 1289–1299 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Friso, G., Majeran, W., Huang, M., Sun, Q. & van Wijk, K. J. Reconstruction of metabolic pathways, protein expression, and homeostasis machineries across maize bundle sheath and mesophyll chloroplasts: large-scale quantitative proteomics using the first maize genome assembly. Plant Physiol. 152, 1219–1250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brutnell, T. P., Sawers, R. J., Mant, A. & Langdale, J. A. Bundle sheath defective2, a novel protein required for post-translational regulation of the rbcL gene of maize. Plant Cell 11, 849–864 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Doron, L., Segal, N., Gibori, H. & Shapira, M. The Bsd2 ortholog in Chlamydomonas reinhardtii is a polysome-associated chaperone that co-migrates on sucrose gradients with the rbcL transcript encoding the Rubisco large subunit. Plant J. 80, 345–355 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Kampinga, H. H. & Craig, E. A. The Hsp70 chaperone machinery: J proteins as drivers of functional specificity. Nature Rev. Mol. Cell Biol. 11, 579–592 (2010).

    Article  CAS  Google Scholar 

  60. Feiz, L. et al. Ribulose-1, 5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize. Plant Cell 24, 3435–3446 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wheatley, N. M., Sundberg, C. D., Gidaniyan, S. D., Cascio, D. & Yeates, T. O. Structure and identification of a pterin dehydratase-like protein as a Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) assembly factor in the alpha-carboxysome. J. Biol. Chem. 289, 7973–7981 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feiz, L. et al. A protein with an inactive pterin-4a-carbinolamine dehydratase domain is required for Rubisco biogenesis in plants. Plant J. 80, 862–869 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Whitney, S. M., Birch, R., Kelso, C., Beck, J. L. & Kapralov, M. V. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by co-expressing its ancillary RAF1 chaperone. Proc. Natl. Acad. Sci. USA http://doi.org/4rj (2015).

  64. Joshi, J., Mueller-Cajar, O., Tsai, Y. C., Hartl, F. U. & Hayer-Hartl, M. Role of small subunit in mediating assembly of red-type form 1 Rubisco. J. Biol. Chem. 290, 1066–1074 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Feller, U., Anders, I. & Mae, T. Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. J. Exp. Bot. 59, 1615–1624 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Portis, A. R., Li, C. S., Wang, D. F. & Salvucci, M. E. Regulation of Rubisco activase and its interaction with Rubisco. J. Exp. Bot. 59, 1597–1604 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Mueller-Cajar, O., Stotz, M. & Bracher, A. Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Photosynth. Res. 119, 191–201 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Parry, M. A. J., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E. & Andralojc, P. J. Rubisco regulation: a role for inhibitors. J. Exp. Bot. 59, 1569–1580 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: Have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005).

    Article  CAS  Google Scholar 

  70. Snider, J., Thibault, G. & Houry, W. A. The AAA+ superfamily of functionally diverse proteins. Genome Biol. 9, 216 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim. Biophys. Acta 1823, 2–14 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Mueller-Cajar, O. et al. Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Nature 479, 194–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Stotz, M. et al. Structure of green-type Rubisco activase from tobacco. Nature Struct. Mol. Biol. 18, 1366–1370 (2011).

    Article  CAS  Google Scholar 

  74. Henderson, J. N., Kuriata, A. M., Fromme, R., Salvucci, M. E. & Wachter, R. M. Atomic resolution X-ray structure of the substrate recognition domain of higher plant Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase. J. Biol. Chem. 286, 35683–35688 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bracher, A., Sharma, A., Starling-Windhof, A., Hartl, F. U. & Hayer-Hartl, M. Degradation of potent Rubisco inhibitor by selective sugar phosphatase. Nature Plants 1, 14002 (2015).

  76. Linster, C. L., Van Schaftingen, E. & Hanson, A. D. Metabolite damage and its repair or pre-emption. Nature Chem. Biol. 9, 72–80 (2013).

    Article  CAS  Google Scholar 

  77. Blayney, M. J., Whitney, S. M. & Beck, J. L. NanoESI mass spectrometry of Rubisco and Rubisco activase structures and their interactions with nucleotides and sugar phosphates. J. Am. Soc. Mass Spectrom. 22, 1588–1601 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Chakraborty, M. et al. Protein oligomerization monitored by fluorescence fluctuation spectroscopy: self-assembly of rubisco activase. Biophys. J. 103, 949–958 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Keown, J. R., Griffin, M. D. W., Mertens, H. D. T. & Pearce, F. G. Small oligomers of Ribulose-bisphosphate carboxylase/oxygenase (Rubisco) activase are required for biological activity. J. Biol. Chem. 288, 20607–20615 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Henderson, J. N., Hazra, S., Dunkle, A. M., Salvucci, M. E. & Wachter, R. M. Biophysical characterization of higher plant Rubisco activase. Biochim. Biophys. Acta 1834, 87–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Kuriata, A. M. et al. ATP and magnesium promote cotton short-form Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations. Biochemistry 53, 7232–7246 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Keown, J. R. & Pearce, F. G. Characterization of spinach Ribulose-1,5-bisphosphate carboxylase/oxygenase activase isoforms reveals hexameric assemblies with increased thermal stability. Biochem. J. 464, 413–423 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Wachter, R. M. et al. Activation of interspecies-hybrid Rubisco enzymes to assess different models for the Rubisco-Rubisco activase interaction. Photosynth. Res. 117, 557–566 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Sage, R. F., Way, D. A. & Kubien, D. S. Rubisco, Rubisco activase, and global climate change. J. Exp. Bot. 59, 1581–1595 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Nisbet, E. G. et al. The age of Rubisco: the evolution of oxygenic photosynthesis. Geobiology 5, 311–335 (2007).

    Article  CAS  Google Scholar 

  86. Mueller-Cajar, O. & Whitney, S. M. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. Photosynth. Res. 98, 667–675 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maisnier-Patin, S. et al. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nature Genet. 37, 1376–1379 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Williams, T. A. & Fares, M. A. The effect of chaperonin buffering on protein evolution. Genome Biol. Evol. 2, 609–619 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bogumil, D. & Dagan, T. Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 51, 9941–9953 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Wyganowski, K. T., Kaltenbach, M. & Tokuriki, N. GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J. Mol. Biol. 425, 3403–3414 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Tokuriki, N. & Tawfik, D. S. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459, 668–671 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Bershtein, S., Mu, W., Serohijos, A. W. R., Zhou, J. & Shakhnovich, E. I. Protein quality control acts on folding intermediates to shape the effects of mutations on organismal fitness. Mol. Cell 49, 133–144 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Greene, D. N., Whitney, S. M. & Matsumura, I. Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem. J. 404, 517–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mueller-Cajar, O. & Whitney, S. M. Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem. J. 414, 205–214 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Durão, P. et al. Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nature Chem. Biol. 11, 148–155 (2015).

    Article  CAS  Google Scholar 

  97. Zarzycki, J., Axen, S. D., Kinney, J. N. & Kerfeld, C. A. Cyanobacterial-based approaches to improving photosynthesis in plants. J. Exp. Bot. 64, 787–798 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Lin, M. T., Occhialini, A., Andralojc, P. J., Parry, M. A. & Hanson, M. R. A faster Rubisco with potential to increase photosynthesis in crops. Nature 513, 547–550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Notredame, C., Higgins, D. G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Huson, D. H. & Scornavacca, C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Systematic Biol. 61, 1061–1067 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manajit Hayer-Hartl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauser, T., Popilka, L., Hartl, F. et al. Role of auxiliary proteins in Rubisco biogenesis and function. Nature Plants 1, 15065 (2015). https://doi.org/10.1038/nplants.2015.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2015.65

  • Springer Nature Limited

This article is cited by

Navigation