Skip to main content
Log in

Degradation of potent Rubisco inhibitor by selective sugar phosphatase

  • Article
  • Published:

From Nature Plants

View current issue Submit your manuscript

An Erratum to this article was published on 14 January 2015

Abstract

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the conversion of atmospheric carbon dioxide into organic compounds in photosynthetic organisms. Alongside carboxylating the five-carbon sugar ribulose-1,5-bisphosphate (RuBP)13, Rubisco produces a small amount of xylulose-1,5-bisphosphate (XuBP), a potent inhibitor of Rubisco4. The AAA+ protein Rubisco activase removes XuBP from the active site of Rubisco in an ATP-dependent process5,6. However, free XuBP rapidly rebinds to Rubisco, perpetuating its inhibitory effect. Here, we combine biochemical and structural analyses to show that the CbbY protein of the photosynthetic bacterium Rhodobacter sphaeroides and Arabidopsis thaliana is a highly selective XuBP phosphatase. We also show that CbbY converts XuBP to the non-inhibitory compound xylulose-5-phosphate, which is recycled back to RuBP. We solve the crystal structures of CbbY from R. sphaeroides and A. thaliana, and through mutational analysis show that the cap domain of the protein confers the selectivity for XuBP over RuBP. Finally, in vitro experiments with CbbY from R. sphaeroides reveal that CbbY cooperates with Rubisco activase to prevent a detrimental build-up of XuBP at the Rubisco active site. We suggest that CbbY, which is conserved in algae and plants, is an important component of the cellular machinery that has evolved to deal with the shortcomings of the ancient enzyme Rubisco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Substrate specificity of CbbY.
Figure 2: Crystal structures of AtCbbY and RsCbbY.
Figure 3: Active site structure.
Figure 4: Role of CbbY in the CBB cycle.

Similar content being viewed by others

References

  1. Spreitzer, R. J. & Salvucci, M. E. Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Ann. Rev. Plant Biol. 53, 449–475 (2002).

    Article  CAS  Google Scholar 

  2. Andersson, I. & Backlund, A. Structure and function of Rubisco. Plant Physiol. Biochem. 46, 275–291 (2008).

    Article  CAS  Google Scholar 

  3. Parry, M. A. J. et al. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 64, 717–730 (2013).

    Article  CAS  Google Scholar 

  4. Pearce, F. G. Catalytic by-product formation and ligand binding by ribulose bisphosphate carboxylases from different phylogenies. Biochem. J. 399, 525–534 (2006).

    Article  CAS  Google Scholar 

  5. Portis, A. R. Jr Rubisco activase – Rubisco's catalytic chaperone. Photosynth. Res. 75, 11–27 (2003).

    Article  CAS  Google Scholar 

  6. Parry, M. A., Keys, A. J., Madgwick, P. J., Carmo-Silva, A. E. & Andralojc, P. J. Rubisco regulation: a role for inhibitors. J. Exp. Bot. 59, 1569–1580 (2008).

    Article  CAS  Google Scholar 

  7. Gibson, J. L. & Tabita, F. R. Analysis of the cbbXYZ operon in Rhodobacter sphaeroides. J. Bacteriol. 179, 663–669 (1997).

    Article  CAS  Google Scholar 

  8. Koonin, E. V. & Tatusov, R. L. Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search. J. Mol. Biol. 244, 125–132 (1994).

    Article  CAS  Google Scholar 

  9. Ferro, M. et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol. Cell. Proteomics 9, 1063–1084 (2010).

    Article  CAS  Google Scholar 

  10. Zybailov, B. et al. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3, e1994 (2008).

    Article  Google Scholar 

  11. Sicher, R. C. & Jensen, R. G. Photosynthesis and ribulose 1,5-bisphosphate levels in intact chloroplasts. Plant Physiol. 64, 880–883 (1979).

    Article  CAS  Google Scholar 

  12. Andralojc, P. J. et al. 2-carboxy-d-arabinitol 1-phosphate (CA1P) phosphatase: evidence for a wider role in plant Rubisco regulation. Biochem. J. 442, 733–742 (2012).

    Article  CAS  Google Scholar 

  13. Lahiri, S. D., Zhang, G., Dunaway-Mariano, D. & Allen, K. N. The pentacovalent phosphorus intermediate of a phosphoryl transfer reaction. Science 299, 2067–2071 (2003).

    Article  CAS  Google Scholar 

  14. Dai, J. et al. Analysis of the structural determinants underlying discrimination between substrate and solvent in β-phosphoglucomutase catalysis. Biochem. 48, 1984–1995 (2009).

    Article  CAS  Google Scholar 

  15. Baxter, N. J. et al. Atomic details of near-transition state conformers for enzyme phosphoryl transfer revealed by MgF-3 rather than by phosphoranes. Proc. Natl Acad. Sci. USA 107, 4555–4560 (2010).

    Article  CAS  Google Scholar 

  16. Lahiri, S. D., Zhang, G., Dunaway-Mariano, D. & Allen, K. N. Caught in the act: the structure of phosphorylated beta-phosphoglucomutase from Lactococcus lactis. Biochemistry 41, 8351–8359 (2002).

    Article  CAS  Google Scholar 

  17. Wang, X. & Tabita, F. R. Reversible inactivation and characterization of purified inactivated form I ribulose 1,5-bisphosphate carboxylase/oxygenase of Rhodobacter sphaeroides. J. Bacteriol. 174, 3593–3600 (1992).

    Article  CAS  Google Scholar 

  18. Lorimer, G. H., Badger, M. R. & Andrews, T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry 15, 529–536 (1976).

    Article  CAS  Google Scholar 

  19. Zhu, G. & Jensen, R. G. Fallover of ribulose 1,5-bisphosphate carboxylase/oxygenase activity: decarbamylation of catalytic sites depends on pH. Plant Physiol. 97, 1354–1358 (1991).

    Article  CAS  Google Scholar 

  20. Zhu, G. & Jensen, R. G. Xylulose 1,5-bisphosphate synthesized by ribulose 1,5-bisphosphate carboxylase/oxygenase during catalysis binds to decarbamylated enzyme. Plant Physiol. 97, 1348–1353 (1991).

    Article  CAS  Google Scholar 

  21. Kusian, B., Yoo, J. G., Bednarski, R. & Bowien, B. The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within the cfx operons of the chemoautotroph Alcaligenes eutrophus. J. Bacteriol. 174, 7337–7344 (1992).

    Article  CAS  Google Scholar 

  22. Schaferjohann, J., Yoo, J. G., Kusian, B. & Bowien, B. The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase. J. Bacteriol. 175, 7329–7340 (1993).

    Article  CAS  Google Scholar 

  23. Lee, L. V., Poyner, R. R., Vu, M. V. & Cleland, W. W. Role of metal ions in the reaction catalysed by l-ribulose-5-phosphate 4-epimerase. Biochemistry 39, 4821–4830 (2000).

    Article  CAS  Google Scholar 

  24. Mueller-Cajar, O. et al. Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Nature 479, 194–199 (2011).

    Article  CAS  Google Scholar 

  25. Catanzariti, A. M., Soboleva, T. A., Jans, D. A., Board, P. G. & Baker, R. T. An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 13, 1331–1339 (2004).

    Article  CAS  Google Scholar 

  26. Geladopoulos, T. P., Sotiroudis, T. G. & Evangelopoulos, A. E. A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192, 112–116 (1991).

    Article  CAS  Google Scholar 

  27. Robinson, S. P. & Portis, A. R. Jr Adenosine triphosphate hydrolysis by purified Rubisco activase. Arch. Biochem. Biophys. 268, 93–99 (1989).

    Article  CAS  Google Scholar 

  28. Baxter, N. J. et al. and α-galactose 1-phosphate in the active site of β-phosphoglucomutase form a transition state analogue of phosphoryl transfer. J. Am. Chem. Soc. 131, 16334–16335 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Soll (LMU Munich, Germany) for A. thaliana cDNA, J. Andralojc and M. Parry (Rothamsted, England) for the initial XuBP, and the JSBG group at ESRF Grenoble, as well as staff at SLS-X06DA and X10SA Villigen, MPIB Crystallization Facility and MPIB Core Facility for their excellent support.

Author information

Authors and Affiliations

Authors

Contributions

A.B. solved the crystal structures and planned and supervised the experiments. A.S. designed and performed the experiments. The initial crystal screening and preliminary phosphatase analysis was performed by A-S.W. The project was initiated by M.H-H. and F.U.H. and M.H-H. planned and supervised the project. All authors analysed the data and the manuscript was written by A.B., F.U.H. and M.H-H.

Corresponding authors

Correspondence to Andreas Bracher or Manajit Hayer-Hartl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracher, A., Sharma, A., Starling-Windhof, A. et al. Degradation of potent Rubisco inhibitor by selective sugar phosphatase. Nature Plants 1, 14002 (2015). https://doi.org/10.1038/nplants.2014.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nplants.2014.2

  • Springer Nature Limited

This article is cited by

Navigation