Skip to main content
Log in

Observation of self-amplifying Hawking radiation in an analogue black-hole laser

  • Article
  • Published:

From Nature Physics

View current issue Submit your manuscript

Abstract

By a combination of quantum field theory and general relativity, black holes have been predicted to emit Hawking radiation. Observation from an actual black hole is, however, probably extremely difficult, so attention has turned to analogue systems in the search for such radiation. Here, we create a narrow, low density, very low temperature atomic Bose–Einstein condensate, containing an analogue black-hole horizon and an inner horizon, as in a charged black hole. We report the observation of Hawking radiation emitted by this black-hole analogue, which is the output of the black-hole laser formed between the horizons. We also observe the exponential growth of a standing wave between the horizons, which results from interference between the negative-energy partners of the Hawking radiation and the negative-energy particles reflected from the inner horizon. We thus observe self-amplifying Hawking radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The black-hole lasing phenomenon and the experimental technique.
Figure 2: The black-hole laser.
Figure 3: The flow velocity, the speed of sound and the initial temperature.
Figure 4: Self-amplifying Hawking radiation.
Figure 5: The exponential growth of the lasing mode.
Figure 6: Time constants, Hawking particle production coefficient and lasing energy.

Similar content being viewed by others

References

  1. Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  2. Hawking, S. W. Black hole explosions? Nature 248, 30–31 (1974).

    Article  ADS  Google Scholar 

  3. Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  4. Page, D. N. Particle emission rates from a black hole: Massless particles from an uncharged, non-rotating hole. Phys. Rev. D 13, 198–206 (1976).

    Article  ADS  Google Scholar 

  5. Dimopoulos, S. & Landsberg, G. Black holes at the Large Hadron Collider. Phys. Rev. Lett. 87, 161602 (2001).

    Article  ADS  Google Scholar 

  6. Unruh, W. G. Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981).

    Article  ADS  Google Scholar 

  7. Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic analog of gravitational black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).

    Article  ADS  Google Scholar 

  8. Barceló, C., Liberati, S. & Visser, M. Analogue gravity from Bose–Einstein condensates. Class. Quantum Gravity 18, 1137–1156 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  9. Recati, A., Pavloff, N. & Carusotto, I. Bogoliubov theory of acoustic Hawking radiation in Bose–Einstein condensates. Phys. Rev. A 80, 043603 (2009).

    Article  ADS  Google Scholar 

  10. Zapata, I., Albert, M., Parentani, R. & Sols, F. Resonant Hawking radiation in Bose–Einstein condensates. New J. Phys. 13, 063048 (2011).

    Article  ADS  Google Scholar 

  11. Jacobson, T. A. & Volovik, G. E. Event horizons and ergoregions in 3He. Phys. Rev. D 58, 064021 (1998).

    Article  ADS  Google Scholar 

  12. Schützhold, R. & Unruh, W. G. Hawking radiation in an electromagnetic waveguide? Phys. Rev. Lett. 95, 031301 (2005).

    Article  ADS  Google Scholar 

  13. Giovanazzi, S. Hawking radiation in sonic black holes. Phys. Rev. Lett. 94, 061302 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  14. Horstmann, B., Reznik, B., Fagnocchi, S. & Cirac, J. I. Hawking radiation from an acoustic black hole on an ion ring. Phys. Rev. Lett. 104, 250403 (2010).

    Article  ADS  Google Scholar 

  15. Leonhardt, U. & Piwnicki, P. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822–825 (2000).

    Article  ADS  Google Scholar 

  16. Leonhardt, U. A laboratory analogue of the event horizon using slow light in an atomic medium. Nature 415, 406–409 (2002).

    Article  ADS  Google Scholar 

  17. Unruh, W. G. & Schützhold, R. On slow light as a black hole analogue. Phys. Rev. D 68, 024008 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  18. Elazar, M., Fleurov, V. & Bar-Ad, S. All-optical event horizon in an optical analog of a Laval nozzle. Phys. Rev. A 86, 063821 (2012).

    Article  ADS  Google Scholar 

  19. Solnyshkov, D. D., Flayac, H. & Malpuech, G. Black holes and wormholes in spinor polariton condensates. Phys. Rev. B 84, 233405 (2011).

    Article  ADS  Google Scholar 

  20. Rousseaux, G., Mathis, C., Maïssa, P., Philbin, T. G. & Leonhardt, U. Observation of negative-frequency waves in a water tank: A classical analogue to the Hawking effect? New J. Phys. 10, 053015 (2008).

    Article  ADS  Google Scholar 

  21. Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).

    Article  ADS  Google Scholar 

  22. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    Article  ADS  Google Scholar 

  23. Belgiorno, F. et al. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105, 203901 (2010).

    Article  ADS  Google Scholar 

  24. Unruh, W. & Schützhold, R. Hawking radiation from ‘phase horizons’ in laser filaments? Phys. Rev. D 86, 064006 (2012).

    Article  ADS  Google Scholar 

  25. Liberati, S., Prain, A. & Visser, M. Quantum vacuum radiation in optical glass. Phys. Rev. D 85, 084014 (2012).

    Article  ADS  Google Scholar 

  26. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

    Article  ADS  Google Scholar 

  27. Gerritsma, R. et al. Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010).

    Article  ADS  Google Scholar 

  28. Gerritsma, R. et al. Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106, 060503 (2011).

    Article  ADS  Google Scholar 

  29. Casanova, J. et al. Quantum simulation of quantum field theories in trapped ions. Phys. Rev. Lett. 107, 260501 (2011).

    Article  ADS  Google Scholar 

  30. Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nature Photon. 8, 356–363 (2014).

    Article  ADS  Google Scholar 

  31. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    Article  ADS  Google Scholar 

  32. Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

    Article  ADS  Google Scholar 

  33. Corley, S. & Jacobson, T. Black hole lasers. Phys. Rev. D 59, 124011 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  34. Leonhardt, U. & Philbin, T. G. in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology (eds Unruh, W. G. & Schutzhöld, R.) 229–245 (Lecture Notes in Physics, Vol. 718, Springer, 2007).

    Book  Google Scholar 

  35. Coutant, A. & Parentani, R. Black hole lasers, a mode analysis. Phys. Rev. D 81, 084042 (2010).

    Article  ADS  Google Scholar 

  36. Finazzi, S. & Parentani, R. Black hole lasers in Bose–Einstein condensates. New J. Phys. 12, 095015 (2010).

    Article  ADS  Google Scholar 

  37. Michel, F. & Parentani, R. Saturation of black hole lasers in Bose–Einstein condensates. Phys. Rev. D 88, 125012 (2013).

    Article  ADS  Google Scholar 

  38. Balbinot, R., Fabbri, A., Fagnocchi, S., Recati, A. & Carusotto, I. Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes. Phys. Rev. A 78, 021603(R) (2008).

    Article  ADS  Google Scholar 

  39. Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic black holes in dilute Bose–Einstein condensates. Phys. Rev. A 63, 023611 (2001).

    Article  ADS  Google Scholar 

  40. Jain, P., Bradley, A. S. & Gardiner, C. W. Quantum de Laval nozzle: Stability and quantum dynamics of sonic horizons in a toroidally trapped Bose gas containing a superflow. Phys. Rev. A 76, 023617 (2007).

    Article  ADS  Google Scholar 

  41. Lahav, O. et al. Realization of a sonic black hole analog in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).

    Article  ADS  Google Scholar 

  42. Shammass, I., Rinott, S., Berkovitz, A., Schley, R. & Steinhauer, J. Phonon dispersion relation of an atomic Bose–Einstein condensate. Phys. Rev. Lett. 109, 195301 (2012).

    Article  ADS  Google Scholar 

  43. Schley, R. et al. Planck distribution of phonons in a Bose–Einstein condensate. Phys. Rev. Lett. 111, 055301 (2013).

    Article  ADS  Google Scholar 

  44. Larré, P-É., Recati, A., Carusotto, I. & Pavloff, N. Quantum fluctuations around black hole horizons in Bose–Einstein condensates. Phys. Rev. A 85, 013621 (2012).

    Article  ADS  Google Scholar 

  45. Macher, J. & Parentani, R. Black-hole radiation in Bose–Einstein condensates. Phys. Rev. A 80, 043601 (2009).

    Article  ADS  Google Scholar 

  46. Mayoral, C. et al. Acoustic white holes in flowing atomic Bose–Einstein condensates. New J. Phys. 13, 025007 (2011).

    Article  ADS  Google Scholar 

  47. Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. & Fabbri, A. Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New J. Phys. 10, 103001 (2008).

    Article  ADS  Google Scholar 

  48. Coutant, A., Fabbri, A., Parentani, R., Balbinot, R. & Anderson, P. R. Hawking radiation of massive modes and undulations. Phys. Rev. D 86, 064022 (2012).

    Article  ADS  Google Scholar 

  49. Uhlmann, M., Xu, Y. & Schützhold, R. Aspects of cosmic inflation in expanding Bose–Einstein condensates. New J. Phys. 7, 248 (2005).

    Article  ADS  Google Scholar 

  50. Weinfurtner, S. Analogue model for an expanding universe. Gen. Relativ. Gravit. 37, 1549–1554 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  51. Prain, A., Fagnocchi, S. & Liberati, S. Analogue cosmological particle creation: Quantum correlations in expanding Bose–Einstein condensates. Phys. Rev. D 82, 105018 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank R. Parentani, I. Carusotto, A. Ori and F. Michel for helpful discussions. This work is supported by the Russell Berrie Nanotechnology Institute and the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Steinhauer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinhauer, J. Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nature Phys 10, 864–869 (2014). https://doi.org/10.1038/nphys3104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3104

  • Springer Nature Limited

This article is cited by

Navigation