Skip to main content
Log in

Analog optical computing

  • Commentary
  • Published:

From Nature Photonics

View current issue Submit your manuscript

The concept of optical computing is reintroduced with an important new twist — optical computing not as a digital machine, but as an analog engine able to serve as a hardware accelerator for existing electronic computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The sextant is an analog instrument for maritime navigation, widely used before the days of the Global Positioning System.

© NOAA

Figure 2: Experimental measurement of nonlinear dynamics in optical fibre.

References

  1. De Solla Price, D. IEEE Micro 4, 22–52 (1984).

    Article  Google Scholar 

  2. Calculating Machines (Smithsonian National Museum of American History); http://go.nature.com/G8NQWF

  3. Isaacson, W. The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution (Simon and Schuster, 2014).

    Google Scholar 

  4. Care, C. A Chronology of Analogue Computing. Computer Science Research Rep. 429 (Univ. Warwick, 2006).

    Google Scholar 

  5. Aspray, W. Computing Before Computers (Iowa State Univ. Press, 1990).

    Google Scholar 

  6. Small, J. S. The Analogue Alternative: The Electronic Analogue Computer in Britain and the USA, 1930–1975 (Psychology Press, 2001).

    Google Scholar 

  7. Fermi, E., Pasta, J. & Ulam, S. Studies of Nonlinear Problems. Document LA-1940 (1955).

  8. Tucker, R. S. Nature Photon. 4, 405 (2010).

    Article  ADS  Google Scholar 

  9. Solli, D. R., Herink, G., Jalali, B. & Ropers, C. Nature Photon. 6, 463–468 (2012).

    Article  ADS  Google Scholar 

  10. Wetzel, B. et al. Sci. Rep. 2, 882 (2012).

    Article  Google Scholar 

  11. Dudley, J. M., Genty, G. & Coen, S. Rev. Mod. Phys. 78, 1135 (2006).

    Article  ADS  Google Scholar 

  12. Jalali, B. & Fathpour, S. J. Lightw. Technol. 24, 4600–4615 (2006).

    Article  ADS  Google Scholar 

  13. Suzuki, N. J. Lightw. Technol. 25, 2495–2501 (2007).

    Article  ADS  Google Scholar 

  14. Lin, Q., Painter, O. J. & Agrawal, G. P. Opt. Express 15, 16604–16644 (2007).

    Article  ADS  Google Scholar 

  15. Ophir, N. et al. Opt. Express 20, 6488–6495 (2012).

    Article  ADS  Google Scholar 

  16. Krausz, F. et al. IEEE J. Quantum Electron. 28, 2097–2122 (1992).

    Article  ADS  Google Scholar 

  17. Ippen, E. P. Appl. Phys. B 58, 159–170 (1994).

    Article  ADS  Google Scholar 

  18. Keller, U. Nature 424, 831–838 (2003).

    Article  ADS  Google Scholar 

  19. Kelkar, P., Coppinger, F., Bhushan, A. S. & Jalali, B. Electron. Lett. 35, 1661–1662 (1999).

    Article  Google Scholar 

  20. Solli, D. R., Chou, J. & Jalali, B. Nature Photon. 2, 48–51 (2008).

    Article  ADS  Google Scholar 

  21. Godin, T. et al. Opt. Express 21, 18452–18460 (2013).

    Article  ADS  Google Scholar 

  22. Solli, D. R., Ropers, C., Koonath, P. & Jalali, B. Nature 450, 1054–1057 (2007).

    Article  ADS  Google Scholar 

  23. Cundiff, S. T., Soto-Crespo, J. M. & Akhmediev, N. Phys. Rev. Lett. 88, 073903 (2002).

    Article  ADS  Google Scholar 

  24. Runge, A. F. J., Broderick, N. G. R. & Erkintalo, M. Optica 2, 36–39 (2015).

    Article  ADS  Google Scholar 

  25. Solli, D. R., Ropers, C. & Jalali, B. Phys. Rev. Lett. 101, 233902 (2008).

    Article  ADS  Google Scholar 

  26. Solli, D. R., Ropers, C. & Jalali, B. Nonlinearity 26, R85–R92 (2013).

    Article  ADS  Google Scholar 

  27. Birkholz, S., Brée, C., Demircan, A. & Steinmeyer, G. Phys. Rev. Lett. 114, 213901 (2015).

    Article  ADS  Google Scholar 

  28. Goda, K., Tsia, K. K. & Jalali, B. Nature 458, 1145–1149 (2009).

    Article  ADS  Google Scholar 

  29. Velten, A., Lawson, E., Bardagiy, A., Bawendi, M. & Raskar, R. SIGGRAPH '11 Article No. 44 (ACM, 2011); http://go.nature.com/ajH7dN

    Google Scholar 

  30. Gao, L., Liang, J., Li, C. & Wang, L. V. Nature 516, 74–77 (2014).

    Article  ADS  Google Scholar 

  31. Chen, C. L., Mahjoubfar, A. & Jalali, B. PLoS ONE 10, e0125106 (2015).

    Article  Google Scholar 

  32. Bosworth, B. T. et al. in 49th Annu. Conf. Information Sciences and Systems (CISS) (IEEE, 2015); http://go.nature.com/KJ5C7F

    Google Scholar 

  33. DeVore, P. T. S., Buckley, B. W., Asghari, M. H., Solli, D. R. & Jalali, B. IEEE Photon. J. 6, 3300107 (2014).

    Article  Google Scholar 

  34. Brumfiel, G. Nature 469, 282–283 (2011).

    Article  ADS  Google Scholar 

  35. LHC Computing Grid: Technical Design Report. Document LCG-TDR-001, CERN-LHCC-2005–024 (LCG TDR Editorial Board, 2005).

Download references

Acknowledgements

This work was supported by the Office of Naval Research (ONR) MURI programme on Optical Computing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel R. Solli or Bahram Jalali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solli, D., Jalali, B. Analog optical computing. Nature Photon 9, 704–706 (2015). https://doi.org/10.1038/nphoton.2015.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.208

  • Springer Nature Limited

This article is cited by

Navigation