Abstract
Thermal diodes1,2—devices that allow heat to flow preferentially in one direction—are one of the key tools for the implementation of solid-state thermal circuits. These would find application in many fields of nanoscience, including cooling, energy harvesting, thermal isolation, radiation detection3 and quantum information4, or in emerging fields such as phononics5,6,7 and coherent caloritronics8,9,10. However, both in terms of phononic11,12,13 and electronic heat conduction14 (the latter being the focus of this work), their experimental realization remains very challenging15. A highly efficient thermal diode should provide a difference of at least one order of magnitude between the heat current transmitted in the forward temperature (T) bias configuration (Jfw) and that generated with T-bias reversal (Jrev), leading to ℛ = Jfw/Jrev ≫ 1 or ≪ 1. So far, ℛ ≈ 1.07–1.4 has been reported in phononic devices16,17,18, and ℛ ≈ 1.1 has been obtained with a quantum-dot electronic thermal rectifier at cryogenic temperatures19. Here, we show that unprecedentedly high ratios of ℛ ≈ 140 can be achieved in a hybrid device combining normal metals tunnel-coupled to superconductors20,21,22. Our approach provides a high-performance realization of a thermal diode for electronic heat current that could be successfully implemented in true low-temperature solid-state thermal circuits.
Similar content being viewed by others
References
Starr, C. The copper oxyde rectifier. J. Appl. Phys. 7, 15–19 (1936).
Li, B., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).
Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2002).
Li, N. et al. Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).
Dubi, Y. & Di Ventra, M. Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011).
Wang, L. & Li, B. Thermal memory: a storage of phononic information. Phys. Rev. Lett. 101, 267203 (2008).
Giazotto, F. & Martínez-Pérez, M. J. The Josephson heat interferometer. Nature 492, 401–405 (2012).
Martínez-Pérez, M. J. & Giazotto, F. A quantum diffractor for thermal flux. Nature Commun. 5, 3579 (2014).
Martínez-Pérez, M. J., Solinas, P. & Giazotto, F. Coherent caloritronics in Josephson-based nanocircuits. J. Low Temp. Phys. 175, 813–837 (2014).
Wu, L-A. & Segal, D. Sufficient conditions for thermal rectification in hybrid quantum structures. Phys. Rev. Lett. 102, 095503 (2009).
Li, B., Wang, L. & Casati, G. Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88, 143501 (2006).
Li, B., Lan, J. & Wang, L. Interface thermal resistance between dissimilar anharmonic lattices. Phys. Rev. Lett. 95, 104302 (2005).
Kuo, D. M. T. & Chang, Y. C. Thermoelectric and thermal rectification properties of quantum dot junctions. Phys. Rev. B 81, 205321 (2010).
Roberts, N. A. & Walker, D. G. A review of thermal rectification observations and models in solid materials. Int. J. Therm. Sci. 50, 648–662 (2011).
Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).
Kobayashi, W., Teraoka, Y. & Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009).
Tian, H. et al. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2, 523 (2012).
Scheibner, R. et al. Quantum dot as thermal rectifier. New J. Phys. 10, 083016 (2008).
Martínez-Pérez, M. J. & Giazotto, F. Efficient phase-tunable Josephson thermal rectifier. Appl. Phys. Lett. 102, 182602 (2013).
Giazotto, F. & Bergeret, F. S. Thermal rectification of electrons in hybrid normal metal–superconductor nanojunctions. Appl. Phys. Lett. 103, 242602 (2013).
Fornieri, A., Martínez-Pérez, M. J. & Giazotto, F. A normal metal tunnel-junction heat diode. Appl. Phys. Lett. 104, 183108 (2014).
Wellstood, F. C., Urbina, C. & Clarke, J. Hot-electron effects in metals. Phys. Rev. B 49, 5942–5955 (1994).
Taskinen, L. J. & Maasilta, I. J. Improving the performance of hot-electron bolometers and solid state coolers with disordered alloys. Appl. Phys. Lett. 89, 143511 (2006).
Dynes, R. C., Narayanamurty, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).
Timofeev, A. V. et al. Recombination-limited energy relaxation in a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009).
Pekola, J. P. et al. Limitations in cooling electrons using normal-metal- superconductor tunnel junctions. Phys. Rev. Lett. 92, 056804 (2004).
Pascal, L. M. A., Courtois, H. & Hekking, F. W. J. Circuit approach to photonic heat transport. Phys. Rev. B 83, 125113 (2011).
Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006).
Schmidt, D. R., Schoelkopf, R. J. & Cleland, A. N. Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93, 045901 (2004).
Acknowledgements
The authors thank C. Altimiras for useful comments. The Marie Curie Initial Training Action (ITN) Q-NET 264034, the Italian Ministry of Defense through PNRM project TERASUPER, and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 615187-COMANCHE are acknowledged for partial financial support.
Author information
Authors and Affiliations
Contributions
M.J.M-P. fabricated the samples. M.J.M-P. and A.F. performed the measurements, analysed the data and carried out simulations. F.G. conceived the experiment. M.J.M-P., A.F. and F.G. discussed the results and implications equally at all stages, and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 328 kb)
Rights and permissions
About this article
Cite this article
Martínez-Pérez, M., Fornieri, A. & Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nature Nanotech 10, 303–307 (2015). https://doi.org/10.1038/nnano.2015.11
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2015.11
- Springer Nature Limited
This article is cited by
-
Non-Fourier heat transport in nanosystems
La Rivista del Nuovo Cimento (2023)
-
Phase and Thermal-Driven Transport Across T-Shaped Double Quantum Dot Josephson Junction
Journal of Superconductivity and Novel Magnetism (2023)
-
Experimental evaluation of thermal rectification in a ballistic nanobeam with asymmetric mass gradient
Scientific Reports (2022)
-
Reverse heat flow with Peltier-induced thermoinductive effect
Communications Physics (2021)
-
Seeking advanced thermal management for stretchable electronics
npj Flexible Electronics (2021)