Skip to main content

Advertisement

Log in

Rectification of electronic heat current by a hybrid thermal diode

  • Letter
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Abstract

Thermal diodes1,2—devices that allow heat to flow preferentially in one direction—are one of the key tools for the implementation of solid-state thermal circuits. These would find application in many fields of nanoscience, including cooling, energy harvesting, thermal isolation, radiation detection3 and quantum information4, or in emerging fields such as phononics5,6,7 and coherent caloritronics8,9,10. However, both in terms of phononic11,12,13 and electronic heat conduction14 (the latter being the focus of this work), their experimental realization remains very challenging15. A highly efficient thermal diode should provide a difference of at least one order of magnitude between the heat current transmitted in the forward temperature (T) bias configuration (Jfw) and that generated with T-bias reversal (Jrev), leading to ℛ = Jfw/Jrev ≫ 1 or ≪ 1. So far, ℛ ≈ 1.07–1.4 has been reported in phononic devices16,17,18, and ℛ ≈ 1.1 has been obtained with a quantum-dot electronic thermal rectifier at cryogenic temperatures19. Here, we show that unprecedentedly high ratios of ℛ ≈ 140 can be achieved in a hybrid device combining normal metals tunnel-coupled to superconductors20,21,22. Our approach provides a high-performance realization of a thermal diode for electronic heat current that could be successfully implemented in true low-temperature solid-state thermal circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Thermal diode implementation.
Figure 2: Thermal diode response and modelling.
Figure 3: Thermal diode performance.
Figure 4: Heat rectification mechanisms.

Similar content being viewed by others

References

  1. Starr, C. The copper oxyde rectifier. J. Appl. Phys. 7, 15–19 (1936).

    CAS  Google Scholar 

  2. Li, B., Wang, L. & Casati, G. Thermal diode: rectification of heat flux. Phys. Rev. Lett. 93, 184301 (2004).

    Article  Google Scholar 

  3. Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

    Article  Google Scholar 

  4. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2002).

    Google Scholar 

  5. Li, N. et al. Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).

    Article  Google Scholar 

  6. Dubi, Y. & Di Ventra, M. Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131–155 (2011).

    Article  CAS  Google Scholar 

  7. Wang, L. & Li, B. Thermal memory: a storage of phononic information. Phys. Rev. Lett. 101, 267203 (2008).

    Article  Google Scholar 

  8. Giazotto, F. & Martínez-Pérez, M. J. The Josephson heat interferometer. Nature 492, 401–405 (2012).

    Article  Google Scholar 

  9. Martínez-Pérez, M. J. & Giazotto, F. A quantum diffractor for thermal flux. Nature Commun. 5, 3579 (2014).

    Article  Google Scholar 

  10. Martínez-Pérez, M. J., Solinas, P. & Giazotto, F. Coherent caloritronics in Josephson-based nanocircuits. J. Low Temp. Phys. 175, 813–837 (2014).

    Article  Google Scholar 

  11. Wu, L-A. & Segal, D. Sufficient conditions for thermal rectification in hybrid quantum structures. Phys. Rev. Lett. 102, 095503 (2009).

    Article  Google Scholar 

  12. Li, B., Wang, L. & Casati, G. Negative differential thermal resistance and thermal transistor. Appl. Phys. Lett. 88, 143501 (2006).

    Article  Google Scholar 

  13. Li, B., Lan, J. & Wang, L. Interface thermal resistance between dissimilar anharmonic lattices. Phys. Rev. Lett. 95, 104302 (2005).

    Article  Google Scholar 

  14. Kuo, D. M. T. & Chang, Y. C. Thermoelectric and thermal rectification properties of quantum dot junctions. Phys. Rev. B 81, 205321 (2010).

    Article  Google Scholar 

  15. Roberts, N. A. & Walker, D. G. A review of thermal rectification observations and models in solid materials. Int. J. Therm. Sci. 50, 648–662 (2011).

    Article  Google Scholar 

  16. Chang, C. W., Okawa, D., Majumdar, A. & Zettl, A. Solid-state thermal rectifier. Science 314, 1121–1124 (2006).

    Article  Google Scholar 

  17. Kobayashi, W., Teraoka, Y. & Terasaki, I. An oxide thermal rectifier. Appl. Phys. Lett. 95, 171905 (2009).

    Article  Google Scholar 

  18. Tian, H. et al. A novel solid-state thermal rectifier based on reduced graphene oxide. Sci. Rep. 2, 523 (2012).

    Article  Google Scholar 

  19. Scheibner, R. et al. Quantum dot as thermal rectifier. New J. Phys. 10, 083016 (2008).

    Article  Google Scholar 

  20. Martínez-Pérez, M. J. & Giazotto, F. Efficient phase-tunable Josephson thermal rectifier. Appl. Phys. Lett. 102, 182602 (2013).

    Article  Google Scholar 

  21. Giazotto, F. & Bergeret, F. S. Thermal rectification of electrons in hybrid normal metal–superconductor nanojunctions. Appl. Phys. Lett. 103, 242602 (2013).

    Article  Google Scholar 

  22. Fornieri, A., Martínez-Pérez, M. J. & Giazotto, F. A normal metal tunnel-junction heat diode. Appl. Phys. Lett. 104, 183108 (2014).

    Article  Google Scholar 

  23. Wellstood, F. C., Urbina, C. & Clarke, J. Hot-electron effects in metals. Phys. Rev. B 49, 5942–5955 (1994).

    Article  CAS  Google Scholar 

  24. Taskinen, L. J. & Maasilta, I. J. Improving the performance of hot-electron bolometers and solid state coolers with disordered alloys. Appl. Phys. Lett. 89, 143511 (2006).

    Article  Google Scholar 

  25. Dynes, R. C., Narayanamurty, V. & Garno, J. P. Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor. Phys. Rev. Lett. 41, 1509–1512 (1978).

    Article  CAS  Google Scholar 

  26. Timofeev, A. V. et al. Recombination-limited energy relaxation in a Bardeen–Cooper–Schrieffer superconductor. Phys. Rev. Lett. 102, 017003 (2009).

    Article  Google Scholar 

  27. Pekola, J. P. et al. Limitations in cooling electrons using normal-metal- superconductor tunnel junctions. Phys. Rev. Lett. 92, 056804 (2004).

    Article  CAS  Google Scholar 

  28. Pascal, L. M. A., Courtois, H. & Hekking, F. W. J. Circuit approach to photonic heat transport. Phys. Rev. B 83, 125113 (2011).

    Article  Google Scholar 

  29. Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006).

    Article  CAS  Google Scholar 

  30. Schmidt, D. R., Schoelkopf, R. J. & Cleland, A. N. Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93, 045901 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Altimiras for useful comments. The Marie Curie Initial Training Action (ITN) Q-NET 264034, the Italian Ministry of Defense through PNRM project TERASUPER, and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 615187-COMANCHE are acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.J.M-P. fabricated the samples. M.J.M-P. and A.F. performed the measurements, analysed the data and carried out simulations. F.G. conceived the experiment. M.J.M-P., A.F. and F.G. discussed the results and implications equally at all stages, and wrote the manuscript.

Corresponding author

Correspondence to Francesco Giazotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Pérez, M., Fornieri, A. & Giazotto, F. Rectification of electronic heat current by a hybrid thermal diode. Nature Nanotech 10, 303–307 (2015). https://doi.org/10.1038/nnano.2015.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.11

  • Springer Nature Limited

This article is cited by

Navigation