Skip to main content
Log in

Single-molecule junctions

Thermoelectricity at the gate

  • News & Views
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

A Correction to this article was published on 03 December 2014

This article has been updated

The electrical conductance and the Seebeck coefficient of molecular junction devices can be simultaneously enhanced using a gate electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Working principle of a three-terminal molecular junction.

Change history

  • 12 November 2014

    In the version of this News & Views article previously published, the definition of the figure of merit was incorrect: it should have read ‘ZT = S2GT/κ’. Corrected after print 12 November 2014.

References

  1. US Department of Energy, Industrial Technologies Program & Energy Efficiency and Renewable Energy Waste Heat Recovery: Technology and Opportunities in U. S. Industry (Prepared by BCS, 2008); available via http://go.nature.com/G73U2a

  2. Kim, Y., Jeong, W., Kim, K., Lee, W. & Reddy, P. Nature Nanotech. 9, 881–885 (2014).

    Article  Google Scholar 

  3. Hicks, L. D. & Dresselhaus, M. S. Phys. Rev. B 47, 12727–12731 (1993).

    Article  CAS  Google Scholar 

  4. Venkatasubramanian, R., Siivola, E., Colpitts, T. & O'Quinn, B. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  5. Heremans, J. P. et al. Phys. Rev. Lett. 88, 216801 (2002).

    Article  Google Scholar 

  6. Reddy, P., Jang, S. Y., Segalman, R. A. & Majumdar, A. Science 315, 1568–1571 (2007).

    Article  CAS  Google Scholar 

  7. Widawsky, J. R., Darancet, P., Neaton, J. B. & Venkataraman, L. Nano Lett. 12, 354–358 (2012).

    Article  CAS  Google Scholar 

  8. Finch, C. M., García-Suárez, V. M. & Lambert, C. J. Phys. Rev. B 79, 033405 (2009).

    Article  Google Scholar 

  9. Bergfield, J. P., Solis, M. A. & Stafford, C. A. ACS Nano 4, 5314–5320 (2010).

    Article  CAS  Google Scholar 

  10. Karlström, O., Linke, H., Karlström, G. & Wacker, A. Phys. Rev. B 84, 113415 (2011).

    Article  Google Scholar 

  11. Paulsson, M. & Datta, S. Phys. Rev. B 67, 241403(R) (2003).

    Article  Google Scholar 

  12. Widawsky, J. R. et al. Nano Lett. 13, 2889–2894 (2013).

    Article  CAS  Google Scholar 

  13. Kim, T. et al. Nano Lett. 14, 794–798 (2014).

    Article  CAS  Google Scholar 

  14. Lee, W. et al. Nature 498, 209–212 (2013).

    Article  CAS  Google Scholar 

  15. Dubi, Y. & Di Ventra, M. Rev. Mod. Phys. 83, 131–155 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey B. Neaton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neaton, J. Thermoelectricity at the gate. Nature Nanotech 9, 876–877 (2014). https://doi.org/10.1038/nnano.2014.256

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.256

  • Springer Nature Limited

This article is cited by

Navigation