Skip to main content
Log in

Processable aqueous dispersions of graphene nanosheets

  • Article
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Abstract

Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Scheme showing the chemical route to the synthesis of aqueous graphene dispersions.
Figure 2: Surface properties of GO and CCG.
Figure 3: Colloidal and morphological characterization of CCG dispersions.
Figure 4: UV-vis absorption spectra showing the change of GO dispersions as a function of reaction time.
Figure 5: Examples demonstrating that films made of CCG sheets can be easily fabricated from CCG dispersions using various solution-phase processing techniques.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  3. McAllister, M. J. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007).

    Article  CAS  Google Scholar 

  4. Stankovich, S. et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).

    Article  CAS  Google Scholar 

  5. Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).

    Article  CAS  Google Scholar 

  6. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  7. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  8. Kotov, N. A., Dekany, I. & Fendler, J. H. Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv. Mater. 8, 637–641 (1996).

    Article  CAS  Google Scholar 

  9. Cassagneau, T., Guerin, F. & Fendler, J. H. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir 16, 7318–7324 (2000).

    Article  CAS  Google Scholar 

  10. Kovtyukhova, N. I. et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).

    Article  CAS  Google Scholar 

  11. Hirata, M., Gotou, T. & Ohba, M. Thin-film particles of graphite oxide 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43, 503–510 (2005).

    Article  CAS  Google Scholar 

  12. Szabo, T., Szeri, A. & Dekany, I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43, 87–94 (2005).

    Article  CAS  Google Scholar 

  13. Lerf, A., He, H. Y., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    Article  CAS  Google Scholar 

  14. Szabo, T. et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006).

    Article  CAS  Google Scholar 

  15. Everett, D. H. Basic Principles of Colloid Science (The Royal Society of Chemistry, London, 1988).

    Book  Google Scholar 

  16. Li, D. & Kaner, R. B. Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem. Commun. 3286–3288 (2005).

  17. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    Article  CAS  Google Scholar 

  18. Niyogi, S. et al. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105–1113 (2002).

    Article  CAS  Google Scholar 

  19. Bahr, J. L. & Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952–1958 (2002).

    Article  CAS  Google Scholar 

  20. Sun, Y. P., Fu, K. F., Lin, Y. & Huang, W. J. Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35, 1096–1104 (2002).

    Article  CAS  Google Scholar 

  21. Gilje, S., Han, S., Wang, M., Wang, W. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    Article  CAS  Google Scholar 

  22. Gómez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    Article  Google Scholar 

  23. Skakalova, V., Kaiser, A. B., Dettlaff-Weglikowska, U., Hrncarikova, K. & Roth, S. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J. Phys. Chem. B 109, 7174–7181 (2005).

    Article  CAS  Google Scholar 

  24. Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    Article  CAS  Google Scholar 

  25. Kirchmeyer, S. & Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077–2088 (2005).

    Article  CAS  Google Scholar 

  26. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  27. Hammond, P. T. Form and function in multilayer assembly: new applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004).

    Article  CAS  Google Scholar 

  28. Tang, Z. Y., Wang, Y., Podsiadlo, P. & Kotov, N. A. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18, 3203–3224 (2006).

    Article  CAS  Google Scholar 

  29. Jan, E. & Kotov, N. A. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotubes composite. Nano Lett. 7, 1123–1128 (2007).

    Article  CAS  Google Scholar 

  30. Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.L. and G.G.W. acknowledge support from the Australian Research Council. R.B.K. thanks the Microelectronics Advanced Research Corporation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

D.L. conceived and designed the experiments, R.B.K. and G.G.W. were involved in discussions on the design and interpretation of the experiments, and D.L., M.B.M. and S.G. performed the experiments. D.L., R.B.K. and G.G.W. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Dan Li or Gordon G. Wallace.

Supplementary information

Supplementary Information

Supplementary information and supplementary table S1 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Müller, M., Gilje, S. et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.451

  • Springer Nature Limited

This article is cited by

Navigation