Skip to main content
Log in

Experience-dependent slow-wave sleep development

  • Brief Communication
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

Sleep enhances plasticity in neocortex, and thereby improves sensory learning1. Here we show that sleep itself undergoes changes as a consequence of waking experience during a late critical period in cats and mice. Dark-rearing produced a robust and reversible decrement of slow-wave electrical activity during sleep that was restricted to visual cortex and impaired by gene-targeted reduction of NMDA receptor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Early sensory deprivation reduces slow-wave intensity during sleep.
Figure 2: Slow-wave plasticity is region-specific, age-dependent and reversible.
Figure 3: Slow-wave activity is sensitive to cortical NMDA receptor function.

Similar content being viewed by others

References

  1. Stickgold, R., Hobson, J.A., Fosse, R. & Fosse, M. Science 294, 1052–1057 (2001).

    Article  CAS  Google Scholar 

  2. Steriade, M., McCormick, D.A. & Sejnowski, T.J. Science 262, 679–685 (1993).

    Article  CAS  Google Scholar 

  3. Mednick, S.C. et al. Nat. Neurosci. 5, 677–681 (2002).

    Article  CAS  Google Scholar 

  4. Daw, N. Visual Development (Plenum, New York, 1995).

    Book  Google Scholar 

  5. Crair, M.C., Gillespie, D.C. & Stryker, M.P. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  6. Frank, M.G., Issa, N.P. & Stryker, M.P. Neuron 30, 275–287 (2001).

    Article  CAS  Google Scholar 

  7. Jouvet-Mounier, D., Astic, L. & Lacote, D. Dev. Psychobiol. 2, 216–239 (1970).

    Article  CAS  Google Scholar 

  8. Gordon, J.A. & Stryker, M.P. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  9. Mower, G.D., Caplan, C.J., Christen, W.G. & Duffy, F.H. J. Comp. Neurol. 235, 448–466 (1985).

    Article  CAS  Google Scholar 

  10. Steigerwald, F. et al. J. Neurosci. 20, 4573–4581 (2000).

    Article  CAS  Google Scholar 

  11. Fagiolini, M. et al. Proc. Natl. Acad. Sci. USA 100, 2854–2859 (2003).

    Article  CAS  Google Scholar 

  12. Kiyama, Y. et al. J. Neurosci. 18, 6704–6712 (1998).

    Article  CAS  Google Scholar 

  13. Ito, I., Sakimura, K., Mishina, M. & Sugiyama, H. Neurosci. Lett. 203, 69–71 (1996).

    Article  CAS  Google Scholar 

  14. Kattler, H., Dijk, D.J. & Borbely, A.A. J. Sleep Res. 3, 159–164 (1994).

    Article  CAS  Google Scholar 

  15. Vyazovskiy, V., Borbely, A.A. & Tobler, I. J. Sleep Res. 9, 367–371 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Mori and M. Mishina (Univ. Tokyo) for kindly providing NR2A KO mice, S. Fujishima for animal care, and M. Fagiolini for inspirational comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Hensch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, H., Katagiri, H. & Hensch, T. Experience-dependent slow-wave sleep development. Nat Neurosci 6, 553–554 (2003). https://doi.org/10.1038/nn1064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1064

  • Springer Nature America, Inc.

This article is cited by

Navigation