Skip to main content
Log in

Direct recordings of grid-like neuronal activity in human spatial navigation

  • Brief Communication
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats and monkeys, are believed to support a wide range of spatial behaviors. Recording neuronal activity from neurosurgical patients performing a virtual-navigation task, we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Virtual navigation task.
Figure 2: Examples of grid-like spatial firing.
Figure 3: Population measurements of cells exhibiting significant grid-like spatial firing.

Similar content being viewed by others

References

  1. O'Keefe, J. & Dostrovsky, J. Brain Res. 34, 171–175 (1971).

    Article  CAS  Google Scholar 

  2. Ekstrom, A.D. et al. Nature 425, 184–188 (2003).

    Article  CAS  Google Scholar 

  3. McHugh, T.J. et al. Cell 87, 1339–1349 (1996).

    Article  CAS  Google Scholar 

  4. Ulanovsky, N. & Moss, C. Nat. Neurosci. 10, 224–233 (2007).

    Article  CAS  Google Scholar 

  5. Muller, R.U. et al. J. Neurosci. 7, 1935–1950 (1987).

    Article  CAS  Google Scholar 

  6. Quirk, G.J. et al. J. Neurosci. 10, 2008–2017 (1990).

    Article  CAS  Google Scholar 

  7. Hafting, T. et al. Nature 436, 801–806 (2005).

    Article  CAS  Google Scholar 

  8. Yartsev, M.M. et al. Nature 479, 103–107 (2011).

    Article  CAS  Google Scholar 

  9. Killian, N.J. et al. Nature 491, 761–764 (2012).

    Article  CAS  Google Scholar 

  10. Sargolini, F. et al. Science 312, 758–762 (2006).

    Article  CAS  Google Scholar 

  11. Doeller, C.F., Barry, C. & Burgess, N. Nature 463, 657–661 (2010).

    Article  CAS  Google Scholar 

  12. Jacobs, J. & Kahana, M.J. Trends Cogn. Sci. 14, 162–171 (2010).

    Article  Google Scholar 

  13. Jacobs, J. et al. Proc. Natl. Acad. Sci. USA 107, 6487–6492 (2010).

    Article  CAS  Google Scholar 

  14. Bird, C.M. & Burgess, N. Nat. Rev. Neurosci. 9, 182–194 (2008).

    Article  CAS  Google Scholar 

  15. Rolls, E.T. Hippocampus 9, 467–480 (1999).

    Article  CAS  Google Scholar 

  16. Krupic, J., Burgess, N. & O'Keefe, J. Science 337, 853–857 (2012).

    Article  CAS  Google Scholar 

  17. Terrazas, A. et al. J. Neurosci. 25, 8085–8096 (2005).

    Article  CAS  Google Scholar 

  18. Buzsáki, G. & Moser, E. Nat. Neurosci. 16, 130–138 (2013).

    Article  Google Scholar 

  19. Hargreaves, E.L. et al. Science 308, 1792–1794 (2005).

    Article  CAS  Google Scholar 

  20. Tsao, A. et al. Curr. Biol. 23, 399–405 (2013).

    Article  CAS  Google Scholar 

  21. Quiroga, R.Q. et al. Neural Comput. 16, 1661–1687 (2004).

    Article  Google Scholar 

  22. Hill, D.N., Mehta, S. & Kleinfeld, D. J. Neurosci. 31, 8699–8705 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients for participating in our study. We thank K. Lee, D. Wyeth, E. Wyeth, D. Pourshaban, E. Behnke and T. Fields for technical assistance. This work was supported by US National Institutes of Health grants MH061975 and NS033221.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed by J.J., C.T.W., M.J.K., A.S. and I.F. Data were collected by J.J., C.T.W., J.F.M., J.F.B., I.F., M.R.S., A.D.S. and N.S. Data analyses were performed by J.J., X.-X.W., C.T.W., A.S. and M.J.K. J.J. and M.J.K. wrote the manuscript.

Corresponding authors

Correspondence to Joshua Jacobs, Itzhak Fried or Michael J Kahana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 2170 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, J., Weidemann, C., Miller, J. et al. Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 16, 1188–1190 (2013). https://doi.org/10.1038/nn.3466

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3466

  • Springer Nature America, Inc.

This article is cited by

Navigation