Skip to main content
Log in

Information for decision-making and stimulus identification is multiplexed in sensory cortex

  • Brief Communication
  • Published:

From Nature Neuroscience

View current issue Submit your manuscript

Abstract

In recordings from anterior piriform cortex in awake behaving mice, we found that neuronal firing early in the olfactory pathway simultaneously conveyed fundamentally different information: odor value (is the odor rewarded?) and identity (what is the smell?). Thus, this sensory system performs early multiplexing of information reflecting stimulus-specific characteristics with that used for decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Odor-induced changes in the firing rates of neurons in APC when neuronal firing is not locked to sniffs (sniff onset after odor addition differs from trial to trial).
Figure 2: Examples showing odor-induced firing in a sniff.
Figure 3: Summary of sniff-locked odor responses.

Similar content being viewed by others

References

  1. Zhang, X. & Firestein, S. Results Probl. Cell Differ. 47, 25–36 (2009).

    PubMed  Google Scholar 

  2. Kay, L.M. & Laurent, G. Nat. Neurosci. 2, 1003–1009 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Doucette, W. et al. Neuron 69, 1176–1187 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roesch, M.R., Stalnaker, T.A. & Schoenbaum, G. Cereb. Cortex 17, 643–652 (2006).

    Article  PubMed  Google Scholar 

  5. Rennaker, R.L., Chen, C.F., Ruyle, A.M., Sloan, A.M. & Wilson, D.A. J. Neurosci. 27, 1534–1542 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blumhagen, F. et al. Nature 479, 493–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Gottfried, J.A. Nat. Rev. Neurosci. 11, 628–641 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smear, M., Shusterman, R., O'Connor, R., Bozza, T. & Rinberg, D. Nature 479, 397–400 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Gschwend, O., Beroud, J. & Carleton, A. PLoS ONE 7, e30155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miura, K., Mainen, Z.F. & Uchida, N. Neuron 74, 1087–1098 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cury, K.M. & Uchida, N. Neuron 68, 570–585 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Shusterman, R., Smear, M.C., Koulakov, A.A. & Rinberg, D. Nat. Neurosci. 14, 1039–1044 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Chaput, M.A. Physiol. Behav. 36, 319–324 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Pager, J. Behav. Brain Res. 16, 81–94 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Piette, C.E., Baez-Santiago, M.A., Reid, E.E., Katz, D.B. & Moran, A. J. Neurosci. 32, 9981–9991 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rennaker, R.L., Miller, J., Tang, H. & Wilson, D.A. J. Neural Eng. 4, L1–L5 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Doucette, W. & Restrepo, D. PLoS Biol. 6, e258 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Slotnick, B.M. & Restrepo, D. in Current Protocols in Neuroscience (eds. Crawley, J.N. et al.) 1–24 (John Wiley and Sons, New York, 2005).

  19. Curran-Everett, D. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1–R8 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Benjamini, Y. & Yekutieli, D. Ann. Stat. 29, 1165–1188 (2001).

    Article  Google Scholar 

  21. Benjamini, Y. & Yekutieli, D. Genetics 171, 783–790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wesson, D.W., Donahou, T.N., Johnson, M.O. & Wachowiak, M. Chem. Senses 33, 581–596 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Felsen and N. Schoppa for discussions. This work was funded by grants from the US National Institutes of Health and the National Institute on Deafness and Other Communication Disorders (F32 DC011980 to D.H.G., F31 DC011202 to J.D.W., F30 DC008066 to W.D., R01 DC00566 to D.R. and P30 DC04657 to D.R.).

Author information

Authors and Affiliations

Authors

Contributions

J.D.W. and D.R. formulated the experimental paradigm and designed all the experiments. J.D.W. performed all the experiments and extracted single and multi-units from the raw data. D.H.G. and D.R. performed analysis of the data and generated all the figures. W.D. and D.R. set up the awake behaving recording system and D.R. wrote all programs necessary to run the experiments. W.D. trained J.D.W. on how to perform surgeries and run the experiments with awake behaving mice. All authors had the opportunity to discuss the results, participated in writing and made comments on the manuscript.

Corresponding author

Correspondence to Diego Restrepo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 4200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gire, D., Whitesell, J., Doucette, W. et al. Information for decision-making and stimulus identification is multiplexed in sensory cortex. Nat Neurosci 16, 991–993 (2013). https://doi.org/10.1038/nn.3432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3432

  • Springer Nature America, Inc.

This article is cited by

Navigation