Skip to main content

Advertisement

Log in

Small molecules enable highly efficient neuronal conversion of human fibroblasts

  • Brief Communication
  • Published:

From Nature Methods

View current issue Submit your manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Forced expression of proneural transcription factors has been shown to direct neuronal conversion of fibroblasts. Because neurons are postmitotic, conversion efficiencies are an important parameter for this process. We present a minimalist approach combining two-factor neuronal programming with small molecule–based inhibition of glycogen synthase kinase-3β and SMAD signaling, which converts postnatal human fibroblasts into functional neuron-like cells with yields up to >200% and neuronal purities up to >80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Highly efficient conversion of HPF into βIII-tub+ cells.
Figure 2: Characterization of trans-differentiated cells derived from HPF-AN lines.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Vierbuchen, T. et al. Nature 463, 1035–1041 (2010).

    Article  CAS  Google Scholar 

  2. Takahashi, K. & Yamanaka, S. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  3. Pang, Z.P. et al. Nature 476, 220 (2011).

    Article  CAS  Google Scholar 

  4. Vierbuchen, T. & Wernig, M. Nat. Biotechnol. 29, 892–907 (2011).

    Article  CAS  Google Scholar 

  5. Broccoli, V., Caiazzo, M. & Dell'anno, M.T. J. Mol. Cell. Biol. 3, 322–323 (2011).

    Article  Google Scholar 

  6. Chambers, S.M. et al. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  Google Scholar 

  7. Li, R. et al. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  Google Scholar 

  8. Lucas, F.R., Goold, R.G., Gordon-Weeks, P.R. & Salinas, P.C. J. Cell Sci. 111, 1351–1361 (1998).

    CAS  PubMed  Google Scholar 

  9. Zaehres, H. et al. Exp. Hematol. 38, 809–818 (2010).

    Article  CAS  Google Scholar 

  10. Lin, T. et al. Nat. Methods 6, 805–808 (2009).

    Article  CAS  Google Scholar 

  11. Maherali, N. & Hochedlinger, K. Curr. Biol. 19, 1718–1723 (2009).

    Article  CAS  Google Scholar 

  12. Polo, J.M. & Hochedlinger, K. Cell Stem Cell 7, 5–6 (2010).

    Article  CAS  Google Scholar 

  13. Samavarchi-Tehrani, P. et al. Cell Stem Cell 7, 64–77 (2010).

    Article  CAS  Google Scholar 

  14. Polleux, F., Whitford, K.L., Dijkhuizen, P.A., Vitalis, T. & Ghosh, A. Development 129, 3147–3160 (2002).

    CAS  PubMed  Google Scholar 

  15. Koch, P., Siemen, H., Biegler, A., Itskovitz-Eldor, J. & Brüstle, O. Nucleic Acids Res. 34, e120 (2006).

    Article  Google Scholar 

  16. Müller, F.J. et al. Nature 455, 401–405 (2008).

    Article  Google Scholar 

  17. Müller, F.J. et al. Nat. Methods 8, 315–317 (2011).

    Article  Google Scholar 

  18. Barnes, M., Freudenberg, J., Thompson, S., Aronow, B. & Pavlidis, P. Nucleic Acids Res. 33, 5914–5923 (2005).

    Article  CAS  Google Scholar 

  19. Chen, J., Bardes, E.E., Aronow, B.J. & Jegga, A.G. Nucleic Acids Res. 37, W305–W311 (2009).

    Article  CAS  Google Scholar 

  20. Caraux, G. & Pinloche, S. Bioinformatics 21, 1280–1281 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Kühne for technical support, J. Itskovitz-Eldor (Technion, Israel Institute of Technology, Haifa, Israel) and W.S. Kunz (University of Bonn, Germany) for providing HPF, and M. Emond for fruitful discussions. This work was supported by grants from the Federal Ministry of Education and Research (01GN1009B and 01GN1008C to O.B. and 01GN1008A to P.W. and G.K.), the German Research Foundation (SFB-TR3 D2 to O.B.), the European Union (FP7-HEALTH-2007-B-22943-NeuroStemcell and HEALTH-F5-2010-266753-SCR&Tox to O.B.), the Stem Cell Network North Rhine Westphalia (L-072.0058 to J.L.), the Else Kröner-Fresenius-Stiftung Fellowship (F.-J.M.) and the Hertie Foundation (O.B.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. conceived and designed the study, performed experiments, assembled, analyzed and interpreted data and helped write the manuscript; J.M., J.D., D.P., J.K. and F.G. performed experiments and analyzed and interpreted data; F.-J.M. and S.H. analyzed and interpreted data; P.W. and G.K. provided materials; P.K. and O.B. conceived and designed study, assembled, analyzed and interpreted data and helped write the manuscript.

Corresponding authors

Correspondence to Philipp Koch or Oliver Brüstle.

Ethics declarations

Competing interests

O.B. declares a competing financial interest as a co-founder of and stockholder in LIFE & BRAIN GmbH.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Note (PDF 9322 kb)

Supplementary Table 1

Gene expression profile of the converted HPFs (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladewig, J., Mertens, J., Kesavan, J. et al. Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nat Methods 9, 575–578 (2012). https://doi.org/10.1038/nmeth.1972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1972

  • Springer Nature America, Inc.

This article is cited by

Navigation